
Hive Technical Note: Continuous Integration - Introduction

(C) Thoughtful Solutions Ltd 2009-2010 Page 1 of 11
Distributed under a Creative Commons Attribution-Share Alike License:
http://creativecommons.org/licenses/by-sa/2.5/

Continuous Integration: Introduction

Authors:
Jennifer Beattie
Edmund Sutcliffe

Hive Technical Note: Continuous Integration - Introduction

(C) Thoughtful Solutions Ltd 2009-2010 Page 2 of 11
Distributed under a Creative Commons Attribution-Share Alike License:
http://creativecommons.org/licenses/by-sa/2.5/

Summary
This document illustrates the motivation for using a continuous integration system to

track and build changes to your infrastructure environment.

We use the Hudson tool and a small skeleton example to show how we can integrate our

automated build processes in a simple manner.

Overview
Previous documents in this series have illustrated how we can use well-known, open

technology to eliminate a number of long-winded manual infrastructure tasks, by making

them automated and repeatable.

We can also make it easy to integrate multiple changes to the infrastructure, by using a

continuous integration (CI) tool. We use a skeleton example in this document, to show

how easy it can be to use Hudson (a popular CI tool) to handle three key automation

aspects:

• Monitoring for changes to infrastructure scripts in our Subversion repository

• Rebuilding the environment based on the changes

• Tracking the build history and alerting to any failures

Prerequisites
You must have a build machine with a PXE boot environment installed as per an earlier

document in this series, the Hive PXE Install document.

You must have created a Subversion epository as per another earlier document in this

series, the Hive Versioned Infrastructure Templates document. We reuse paths to the

notional BuildTools project in that server in this document.

Hive Technical Note: Continuous Integration - Introduction

(C) Thoughtful Solutions Ltd 2009-2010 Page 3 of 11
Distributed under a Creative Commons Attribution-Share Alike License:
http://creativecommons.org/licenses/by-sa/2.5/

Installing Hudson
Hudson is a Java web application, so the WAR file which contains it can be easily

installed inside Tomcat or any other standard Java application server.

The Hudson package is also directly launchable as a Java application, so we will

demonstrate this ease of use here. The Hudson web site also includes an RPM-packaged

version of the code.

On a suitable Linux server such as the build machine, gain root access, move into /root

(for the purposes of this example), and download the Hudson WAR file.

Assuming Java is already installed on your local machine, launch the WAR file and you

should see it start up and begin listening on port 8080:

produces output like:

[root@core root]# java -jar hudson.war

Running from: /root/hudson.war

[Winstone 2010/05/27 12:59:15] - Beginning extraction from war file

hudson home directory: /root/.hudson

Using one-time self-signed certificate

[Winstone 2010/05/27 12:59:19] - AJP13 Listener started: port=8009

[Winstone 2010/05/27 12:59:20] - HTTP Listener started: port=8080

[Winstone 2010/05/27 12:59:20] - Winstone Servlet Engine v0.9.10

running: controlPort=disabled

May 27, 2010 12:59:20 PM hudson.model.Hudson$4 onAttained

INFO: Started initialization

May 27, 2010 12:59:20 PM hudson.model.Hudson$4 onAttained

INFO: Listed all plugins

May 27, 2010 12:59:20 PM hudson.model.Hudson$4 onAttained

INFO: Prepared all plugins

May 27, 2010 12:59:20 PM hudson.model.Hudson$4 onAttained

INFO: Started all plugins

May 27, 2010 12:59:23 PM hudson.model.Hudson$4 onAttained

INFO: Loaded all jobs

May 27, 2010 12:59:23 PM hudson.model.Hudson$4 onAttained

INFO: Completed initialization

May 27, 2010 12:59:23 PM hudson.TcpSlaveAgentListener <init>

INFO: JNLP slave agent listener started on TCP port 32769

Even this simple method of launching Hudson will create a data directory under

/root/.hudson , so that it will remember persistent state like job history across multiple

instances.

cd /root

wget http://hudson-ci.org/latest/hudson.war
java -jar hudson.war

Hive Technical Note: Continuous Integration - Introduction

(C) Thoughtful Solutions Ltd 2009-2010 Page 4 of 11
Distributed under a Creative Commons Attribution-Share Alike License:
http://creativecommons.org/licenses/by-sa/2.5/

Now, assuming port 8080 is open in iptables, we can point our web browser at the

Hudson interface. Although it is possible to write job configuration files by hand if

needed, all the useful Hudson actions can be performed through this web UI:

In the next section we will create a simple job to demonstrate how an automated

environment build can run.

Hive Technical Note: Continuous Integration - Introduction

(C) Thoughtful Solutions Ltd 2009-2010 Page 5 of 11
Distributed under a Creative Commons Attribution-Share Alike License:
http://creativecommons.org/licenses/by-sa/2.5/

Configuring Hudson jobs
For demonstration purposes, we will assume that a repository is available under the folder
https://buildtools.test.example.com/svn/BuildTools/
and we will create a one line dummy bash shell script that will indicate when the build

details actually run:

#/!bin/bash

echo "Build runs here"

We check this into our BuildTools folder in the repository as autobuild.sh .

Note: We must also set the svn:executable flag on this script, so that it will be given

file-system executable permissions when it is checked out. This will allow Hudson (or a

human) to execute the script and run a build without errors.

The exact means of setting this flag varies depending on your client. From a command

line client working on a base copy you could do

We can now configure a Hudson job to periodically check the repository for any changes,

and create a new build if any are needed -- we click the "New Job" link, and create a

"free-style software project" called ClusterBuild .

Under Source Code Management we can now select "Subversion" and enter the URL
https://buildtools.test.example.com/svn/BuildTools

svn propset svn:executable true autobuild.sh
svn commit -m "Marking as executable"

Hive Technical Note: Continuous Integration - Introduction

(C) Thoughtful Solutions Ltd 2009-2010 Page 6 of 11
Distributed under a Creative Commons Attribution-Share Alike License:
http://creativecommons.org/licenses/by-sa/2.5/

If the repository requires authentication, as it should, then Hudson will pop up a warning

message and ask us to enter credentials, which will normally be a simple userID and

password combination. Note that it might be necessary to go back into the ClusterBuild

configuration tab and re-enter the Repository URL in this scenario.

Under Build Triggers we can check "Poll SCM" so that Hudson only rebuilds when it

detects a change in the repository. It will request a schedule, which is a cron-style

specification of when to poll, although it provides some useful help text under the input

field.

For example, we can enter
*/5 * * * *

in the schedule field in order to poll every 5 minutes.

Finally, under Build, we can click "Add Build Step" and choose Execute Shell as the

action to take. Hudson creates a workspace for each job, and it will check out the

Hive Technical Note: Continuous Integration - Introduction

(C) Thoughtful Solutions Ltd 2009-2010 Page 7 of 11
Distributed under a Creative Commons Attribution-Share Alike License:
http://creativecommons.org/licenses/by-sa/2.5/

BuildTools folder into this workspace. Therefore, the shell script path we want to

configure is BuildTools/autobuild.sh since it is relative to the workspace.

Finally, we can click Save to create the job and store it in Hudson.

Hudson filesystem structure

At this point we can see what Hudson is doing for us, beyond us running our own cron

jobs to periodically rebuild our infrastructure.

Inside its filesystem space (which in our temporary example is under /root/.hudson

but if you are using the RPM-installed version of Hudson will be under

/var/lib/hudson) we see a new folder /root/.hudson/jobs/ClusterBuild with a

file config.xml representing this build job:

<?xml version='1.0' encoding='UTF-8'?>

<project>

 <actions/>

 <description></description>

 <keepDependencies>false</keepDependencies>

 <properties/>

 <scm class="hudson.scm.SubversionSCM">

 <locations>

 <hudson.scm.SubversionSCM_-ModuleLocation>

<remote>https://buildtools.test.example.com/svn/BuildTools</remote>

 </hudson.scm.SubversionSCM_-ModuleLocation>

 </locations>

 <useUpdate>true</useUpdate>

 <doRevert>false</doRevert>

 <excludedRegions></excludedRegions>

 <includedRegions></includedRegions>

 <excludedUsers></excludedUsers>

 <excludedRevprop></excludedRevprop>

 <excludedCommitMessages></excludedCommitMessages>

 </scm>

 <canRoam>true</canRoam>

 <disabled>false</disabled>

<blockBuildWhenUpstreamBuilding>false</blockBuildWhenUpstreamBuilding>

 <triggers class="vector">

 <hudson.triggers.SCMTrigger>

 <spec>*/5 * * * *</spec>

 </hudson.triggers.SCMTrigger>

 </triggers>

 <concurrentBuild>false</concurrentBuild>

 <builders>

 <hudson.tasks.Shell>

 <command>BuildTools/autobuild.sh</command>

 </hudson.tasks.Shell>

 </builders>

 <publishers/>

 <buildWrappers/>

</project>

Hive Technical Note: Continuous Integration - Introduction

(C) Thoughtful Solutions Ltd 2009-2010 Page 8 of 11
Distributed under a Creative Commons Attribution-Share Alike License:
http://creativecommons.org/licenses/by-sa/2.5/

It is also possible, therefore, to edit these jobs by hand rather than via the UI, and save the

job information elsewhere if we wish to harden the Hudson build process itself for better

availability.

Using Hudson
If we return to the Hudson home page, we will see the new job and its recent status:

The blue ball indicates a successful build (red would indicate failure - the build could not

complete; yellow would indicate an unstable build - the build completed but a follow-on

publisher action such as a test suite reported failure).

The weather icon is used to indicate the history of recent builds. The "sunny" icon shows

that recent builds have all succeeded. If recent builds had contained failures, the weather

icon might be cloudy or stormy.

Hive Technical Note: Continuous Integration - Introduction

(C) Thoughtful Solutions Ltd 2009-2010 Page 9 of 11
Distributed under a Creative Commons Attribution-Share Alike License:
http://creativecommons.org/licenses/by-sa/2.5/

Now, if we click on the job link to enter the job specific page, we can see links to

Configure the job, Build Now to force a build, or check the Subversion Polling Log to

make sure it is tracking changes.

Moreover, the Build History in the left column allows us to drill into any recent build

and see the specific actions that were taken. Using the Console Output link we see:

We can see Hudson detecting the changed repository (in this case because it is the first

build we have attempted), checking out our build templates and performing the build.

The return code of 0 from our script tells Hudson that it was successful; if the script

return code was > 0 then Hudson would report failure.

Hive Technical Note: Continuous Integration - Introduction

(C) Thoughtful Solutions Ltd 2009-2010 Page 10 of 11
Distributed under a Creative Commons Attribution-Share Alike License:
http://creativecommons.org/licenses/by-sa/2.5/

Automatic change tracking
There is one more thing we need to demonstrate in this introduction, in order to close the

loop of our build cycle. That is, let us make a change to our autobuild.sh script so that

it writes to the filesystem, and look at where Hudson writes the corresponding files.

This will enable us to write our controller scripts so that new successful builds can be

approved in a given environment, and made available for host instances to boot from. It

will also demonstrate Hudson automatically detecting changes.

We edit the autobuild.sh script so that it looks like:

#!/bin/bash

mkdir container

echo "Build occurs here." >> container/testout.txt

and check the new contents in to Subversion.

After 5 minutes, we should see a new build appear in the Hudson log as it picks up the

change and builds from the new template.

If we look in the filesystem under /root/.hudson/jobs/ClusterBuild/workspace ,

we will see the results of the build:

[root@core workspace]# pwd

/root/.hudson/jobs/ClusterBuild/workspace

[root@core workspace]# ls -alh

total 16K

drwxr-xr-x 4 root root 4.0K May 28 12:59 .

drwxr-xr-x 4 root root 4.0K May 28 12:59 ..

drwxr-xr-x 3 root root 4.0K May 28 12:59 BuildTools

drwxr-xr-x 2 root root 4.0K May 28 12:59 container

[root@core workspace]# ls -alh container/

total 12K

drwxr-xr-x 2 root root 4.0K May 28 12:59 .

drwxr-xr-x 4 root root 4.0K May 28 12:59 ..

-rw-r--r-- 1 root root 19 May 28 12:59 testout.txt

[root@core workspace]# cat container/testout.txt

Build occurs here.

Hudson makes the $WORKSPACE environment variable available to our scripts giving the

absolute path to the workspace. Clearly, we can now write our template scripts to publish

the results of the build, and indeed Hudson provides a wealth of plugins to ease the

process of distributing the build results.

Hive Technical Note: Continuous Integration - Introduction

(C) Thoughtful Solutions Ltd 2009-2010 Page 11 of 11
Distributed under a Creative Commons Attribution-Share Alike License:
http://creativecommons.org/licenses/by-sa/2.5/

References

Hudson home page

http://hudson-ci.org/

Hudson plugins

http://wiki.hudson-ci.org/display/HUDSON/Plugins

Alternative Continuous Integration Systems:

CruiseControl

(Java-based alternative, also has a .NET port)

http://cruisecontrol.sourceforge.net/

BuildBot

(Python-based, has some nice reporting tools)

http://buildbot.net/trac

http://buildbot.net/trac/wiki/ScreenShots

Team Foundation Server

(Microsoft's commercial offering, includes Team Build server based on the msbuild tool)

http://www.microsoft.com/visualstudio/

http://msdn.microsoft.com/en-US/library/ms364045(v=VS.80).aspx

