
Hive Technical Note: Diskless ESX Install

(C) Thoughtful Solutions Ltd 2009-2010 Page 1 of 14
Distributed under a Creative Commons Attribution-Share Alike License:
http://creativecommons.org/licenses/by-sa/2.5/

Diskless ESX Install

Authors:
Jennifer Beattie
Edmund Sutcliffe

Hive Technical Note: Diskless ESX Install

(C) Thoughtful Solutions Ltd 2009-2010 Page 2 of 14
Distributed under a Creative Commons Attribution-Share Alike License:
http://creativecommons.org/licenses/by-sa/2.5/

Summary
This document provides detailed steps to set up a diskless ESXi image that can be booted

over a local Ethernet.

We assume that a basic PXE environment has already been set up as per another

document in this series, the Hive PXE Install document.

This setup will allow multiple ESXi servers to be booted from a central boot server,

allowing quick deployment of new ESXi bare hardware.

Overview
Booting ESX over the network requires some integration steps to link with VMWare's

tools.

• Extract the necessary components from the VMWare ISO image.

• Configure these components in your existing PXE boot environment.

• Integrate the "midwife" tools to allow the ESX server to communicate about its

boot process.

• Use the VMWare command line tools to save the state of an individual ESX

server.

Prerequisites
You must have a build machine with a PXE boot environment installed as per an earlier

document in this series, the Hive PXE Install document.

You must have a ESXi bootable target server to disklessly boot, and have DNS set up

with records for the boot server and target server names.

If you wish to use the midwife scripts, these should be downloaded via:

http://communities.vmware.com/docs/DOC-7511

The scripts require either Perl or Powershell, and are designed for Windows in both

cases. We also provide a sample Perl script in Appendix A which uses the VMWare Perl

SDK but can run on Linux.

Hive Technical Note: Diskless ESX Install

(C) Thoughtful Solutions Ltd 2009-2010 Page 3 of 14
Distributed under a Creative Commons Attribution-Share Alike License:
http://creativecommons.org/licenses/by-sa/2.5/

Filesystem Paths and Network Addresses
Several of the pathnames used in this install process are configurable. This document

assumes particular locations for these, and for ease of reading, the explanations below use

these paths without qualifying them as potentially variable names.

The following paths are used as standard:

TFTP root directory /tftpboot

NFS base directory /data/bootimage

HTTP boot server filesystem location /data/bootserv

CentOS HTTP repository root /data/bootserv/centos

The network topology is assumed to be on a private network 10.1.4.0/24 in this

example. The machines being created are intended to be part of a domain

test.example.com.

We further assume that the build machine will be acting as the DNS nameserver for the

local network, and this is reflected in the resolv.conf we create. The build machine itself

is named core in this example (ie core.test.example.com) and is assumed to be on

10.1.4.1.

Process
The following steps should be followed in sequence, once the pre-requisites have been

met. We assume in these steps that we are starting in the directory /root , with the ISO

image in the same directory, and also using /root for temporary storage.

Extract the components from the VMWare ISO image

Begin with the ISO image file, which should be named similarly to:
VMware-VMvisor-Installer-4.0.0.Update01-208167.x86_64.iso

Mount this image on a local path like /mnt/cdrom :

First of all, we need to extract the PXE bootstrap file mboot.c32 from the root of this

ISO image.

Note: SYSLINUX also provides an mboot.c32 file, but you can NOT use it; if you do,

ESX will fail at PXE boot time, with an error "firmware appears corrupt". Some of the

older informal VMware recipes are a little ambiguous on this point.

mount -t iso9660 /root/VMware-VMvisor-Installer-4.0.0.Update01-
208167.x86_64.iso /mnt/cdrom -o ro,loop

Hive Technical Note: Diskless ESX Install

(C) Thoughtful Solutions Ltd 2009-2010 Page 4 of 14
Distributed under a Creative Commons Attribution-Share Alike License:
http://creativecommons.org/licenses/by-sa/2.5/

Also inside the ISO is a file which in ESXi 4.0 is called image.tgz , 286MB in size (in

previous ESX versions the necessary file was named install.tgz ; this file is still

present in ESXi 4.0 but is no longer the right file). From inside this image.tgz file, we

need to extract another disk image file -- the image which contains the ESXi hypervisor

kernel and system files, plus other tools.

Now we have a 900MB disk image file. The image actually contains multiple partitions.

You can see these by doing a sfdisk -l -uS vmvisor.dd

and you should see output like:

cp /mnt/cdrom/mboot.c32 /tftpboot/mboot.c32
cp /mnt/cdrom/menu.c32 /tftpboot/menu.c32

mkdir /root/esxtemp

cd /root/esxtemp

tar -O -xvzf /mnt/cdrom/image.tgz \

 usr/lib/vmware/installer/VMware-VMvisor-big-208167-x86_64.dd.bz2 \

 > vmvisor.dd.bz2

bunzip2 vmvisor.dd.bz2
umount /mnt/cdrom

[root@core esxtemp]# sfdisk -l -uS vmvisor.dd

last_lba(): I don't know how to handle files with mode 81a4

Disk vmvisor.dd: cannot get geometry

Disk vmvisor.dd: 114 cylinders, 255 heads, 63 sectors/track

Warning: extended partition does not start at a cylinder boundary.

DOS and Linux will interpret the contents differently.

Warning: The partition table looks like it was made

 for C/H/S=*/64/32 (instead of 114/255/63).

For this listing I'll assume that geometry.

Units = sectors of 512 bytes, counting from 0

 Device Boot Start End #sectors Id System

vmvisor.dd1 8192 1843199 1835008 5 Extended

vmvisor.dd2 0 - 0 0 Empty

vmvisor.dd3 0 - 0 0 Empty

vmvisor.dd4 * 32 8191 8160 4 FAT16 <32M

vmvisor.dd5 8224 520191 511968 6 FAT16

vmvisor.dd6 520224 1032191 511968 6 FAT16

vmvisor.dd7 1032224 1257471 225248 fc VMware VMKCORE
vmvisor.dd8 1257504 1843199 585696 6 FAT16

Hive Technical Note: Diskless ESX Install

(C) Thoughtful Solutions Ltd 2009-2010 Page 5 of 14
Distributed under a Creative Commons Attribution-Share Alike License:
http://creativecommons.org/licenses/by-sa/2.5/

Now, partition 5 is the one containing the ESXi image files.

Having used -uS to extract the start sector and length in sectors of this partition, we can

extract it with a command equivalent to:
dd if=vmvisor.dd of=part5.img skip=8224 count=511968

where 8224 is the start sector and 511968 is the length in sectors.

In fact, we use sfdisk in an extended command line in order to automatically extract the

required offset and length from the sfdisk output:

This is a VFAT formatted partition which we can now temporarily mount locally and

copy the necessary files into an appropriate esxi directory in our TFTP boot tree:

We should now see the following files available inside /tftpboot/esxi :

At this point we can proceed to configure our PXE menu. Note that if you need copies of

the tools such as VMtools and the Virtual Infrastructure Client (VI Client) package, these

can be found in partition 8 of the vmvisor disk image.

sfdisk -l -uS vmvisor.dd | awk '/vmvisor\.dd5/ \

 { print "skip="$2 " count="$4 }' | xargs dd if=vmvisor.dd \
 of=part5.img

mkdir -p /mnt/vmvisor

mount part5.img /mnt/vmvisor -t vfat -o ro,loop

mkdir -p /tftpboot/esxi

cp /mnt/vmvisor/* /tftpboot/esxi/
umount /mnt/vmvisor

[root@core esxtemp]# ls -alh /tftpboot/esxi

total 61M

drwxr-xr-x 2 root root 4.0K May 17 03:45 .

drwxr-xr-x 6 root root 4.0K May 17 03:45 ..

-rwxr-xr-x 1 root root 150 May 17 03:45 boot.cfg

-rwxr-xr-x 1 root root 1.1M May 17 03:45 cimstg.tgz

-rwxr-xr-x 1 root root 13M May 17 03:45 cim.vgz

-rwxr-xr-x 1 root root 137 May 17 03:45 license.tgz

-rwxr-xr-x 1 root root 137 May 17 03:45 mod.tgz

-rwxr-xr-x 1 root root 137 May 17 03:45 oem.tgz

-rwxr-xr-x 1 root root 1.3K May 17 03:45 pkgdb.tgz

-rwxr-xr-x 1 root root 45M May 17 03:45 sys.vgz

-rwxr-xr-x 1 root root 17K May 17 03:45 vmkboot.gz
-rwxr-xr-x 1 root root 2.0M May 17 03:45 vmk.gz

Hive Technical Note: Diskless ESX Install

(C) Thoughtful Solutions Ltd 2009-2010 Page 6 of 14
Distributed under a Creative Commons Attribution-Share Alike License:
http://creativecommons.org/licenses/by-sa/2.5/

Configure components in your existing PXE boot environment

In order to PXE boot, ESXi relies on the mboot.c32 file. As noted above, you must use

the copy from the ESX ISO, and we assume that this has already been copied into

/tftpboot as per the instructions above.

We can now configure our PXE menu with a minimal set of parameters to boot a new

ESX instance. Add the following to your pxelinux.cfg/default file (or a similar

machine specific file):

Note that the append line is a single line, and the dashes separating the system files are

always a sequence of three dashes.

You can now boot an ESX node using this configuration, and it should successfully boot

and give you the yellow and grey ESXi text admin menu. The root password will be

empty at this stage, since none has been configured, and the IP address should be the one

that was assigned via DHCP.

It should also be possible to connect to this instance using the VI Client.

When testing, it is possible to boot an ESXi hypervisor inside a virtual machine, connect

to it using the VI Client and administer it (for example, create a datastore and a new VM

instance) -- it is only impossible to actually power on a VM inside a VM.

label esx

 kernel mboot.c32

 append esxi/vmkboot.gz --- esxi/vmk.gz --- esxi/sys.vgz ---
 esxi/cim.vgz --- esxi/oem.tgz --- esxi/license.tgz ipappend 2

Hive Technical Note: Diskless ESX Install

(C) Thoughtful Solutions Ltd 2009-2010 Page 7 of 14
Distributed under a Creative Commons Attribution-Share Alike License:
http://creativecommons.org/licenses/by-sa/2.5/

Integrate the "midwife" tools for external communication

The first thing we can do is add a kernel parameter to those given in the PXE menu file.

Add a PBHOST parameter so that the append line looks like this:

append esxi/vmkboot.gz PBHOST=10.1.4.1:3333 --- esxi/vmk.gz

 --- esxi/sys.vgz --- esxi/cim.vgz --- esxi/oem.tgz ---

 esxi/license.tgz ipappend 2

The PB in PBHOST stands for Post Boot.

Any IP address (or hostname, if DNS is in use) and port can be provided. Once the

instance is alive, it will open a TCP connection to the given port, and this can be used to

trigger a post boot action by a listening "midwife" process, so named since it aids in the

birth of a new ESX instance. That listening process can then invoke more VMWare-

specific actions using one of the VMWare SDKs, which use the SOAP interface to ESX

and vCenter to perform additional configuration. The IP address of the calling machine

can be used to derive the identity of the newly-born ESX server to be configured.

If you are running in a vCenter environment, the triggered script will normally be run on

the vCenter server, but this is not required. In a simple ESXi environment, the scripts will

normally be run on the boot server.

One of the more well-known Internet references on this subject comes from a VMWare

architect named Lance Berc. He provides some sample scripts in both Perl and Windows

Powershell to perform configuration tasks (a Java version of the VMWare SDK is

available, though you would need to write your own scripts in this case). The URL for his

midwife scripts is found below. Note that his Perl scripts are written with a Windows

environment as a requirement.

Note: Lance's documents, as listed in the References section, refer to a file lance-

boot.tgz, which adds a post-boot midwife process to an ESXi 3.5 install. VMWare has

now rolled this feature into ESXi 4.0, so the lance-boot.tgz file is not required1
1
.

1
 In fact, whereas Lance's original script simply opened a TCP connection to signal the midwife, the new

process also sends some opaque binary data, likely used in a vCenter environment in ESX 4.0.

However, this does not affect the operation of our trigger scripts.

Hive Technical Note: Diskless ESX Install

(C) Thoughtful Solutions Ltd 2009-2010 Page 8 of 14
Distributed under a Creative Commons Attribution-Share Alike License:
http://creativecommons.org/licenses/by-sa/2.5/

We attach another sample vmware midwife configuration script, in Perl, as Appendix A

of this document, which will run on Linux, needing only the VMWare Perl SDK and a

few prerequisite Perl modules to run. The Perl modules can be obtained by configuring

access to the RPMForge internet repository:

and the URL to download the VMWare Perl SDK can be found in the references section

at the end of this document.

Save and boot from the configured state of an ESX server
Once an ESX server has been configured in your environment to a suitable point (for

example, root password set, and virtual networks configured), this config can be saved,

and automatically loaded at boot time.

This can be done over the network using the VMWare vCLI/RCLI (remote client) toolkit,

which can be downloaded with the VMWare Perl SDK. In the bin directory of this

toolkit are a number of scripts:

[root@core bin]# ls

esxcfg-advcfg esxcfg-mpath35 esxcfg-snmp svmotion

esxcfg-cfgbackup esxcfg-nas esxcfg-syslog vicfg-advcfg

esxcfg-dns esxcfg-nics esxcfg-user vicfg-cfgbackup

esxcfg-dumppart esxcfg-ntp esxcfg-vmknic vicfg-dns

esxcfg-iscsi esxcfg-rescan esxcfg-volume vicfg-dumppart

esxcfg-module esxcfg-route esxcfg-vswitch vicfg-iscsi

esxcfg-mpath esxcfg-scsidevs resxtop vicfg-module

vicfg-mpath vicfg-scsidevs vifs
vicfg-mpath35 vicfg-snmp vihostupdate

vicfg-nas vicfg-syslog vihostupdate35

vicfg-nics vicfg-user viperl-support

vicfg-ntp vicfg-vmknic vmkfstools

vicfg-rescan vicfg-volume vmware-cmd

vicfg-route vicfg-vswitch vmware-uninstall-vSphere-CLI.pl

The esxcfg-* scripts are merely alternative names for the vicfg-* scripts, and you will

find both names used in online references. The vCLI/RCLI is also available as part of a

pre-made virtual appliance, the vSphere Management Assistant - the VMA,

downloadable at: http://www.vmware.com/support/developer/vima/

wget http://packages.sw.be/rpmforge-release/rpmforge-release-0.5.1-

1.el5.rf.x86_64.rpm

rpm -Uvh rpmforge-release-0.5.1-1.el5.rf.x86_64.rpm
yum clean all

Hive Technical Note: Diskless ESX Install

(C) Thoughtful Solutions Ltd 2009-2010 Page 9 of 14
Distributed under a Creative Commons Attribution-Share Alike License:
http://creativecommons.org/licenses/by-sa/2.5/

You can use the esxcfg-cfgbackup tool to extract the current config of a configured

ESX server like this (the -s switch means save current config):

The resulting esxconf.tgz file is indeed a tarred, gzipped file, and if you open it up you

will discover a Manifest file plus a local.tgz file for the local config filesystem,

which includes several files for the target server's etc tree, including a shadow

password file, for instance.

In order to then boot from this config, it must be appended to the PXE append kernel

parameters line in /tftpboot/pxelinux.cfg/default, so that the line might look like

this:

The above is all one line, as normal.

On subsequent boots of the ESX server, the relevant config will be immediately in place.

Obviously, for multiple servers this PXE config may need to be dynamically served up

on a per-physical-server basis.

esxcfg-cfgbackup --server 10.1.4.101 --password b0gus \
 --username root -s /tftpboot/esxi/esxconf.tgz

append esxi/vmkboot.gz PBHOST=10.1.4.7:3333 --- esxi/vmk.gz ---

 esxi/sys.vgz --- esxi/cim.vgz --- esxi/oem.tgz ---
 esxi/license.tgz --- esxi/esxconf.tgz ipappend 2

Hive Technical Note: Diskless ESX Install

(C) Thoughtful Solutions Ltd 2009-2010 Page 10 of 14
Distributed under a Creative Commons Attribution-Share Alike License:
http://creativecommons.org/licenses/by-sa/2.5/

References
Lance Berc's profile page at VMWare:
http://communities.vmware.com/people/lberc

Lance Berc's description of how to extract the ESX ISO image for PXE booting:
http://communities.vmware.com/docs/DOC-6824

Lance Berc's description of his midwife scripts:
http://communities.vmware.com/servlet/JiveServlet/previewBody/7512-102-

2-4589/ESX-boot+configure.pdf

ESX Midwife scripts:
http://communities.vmware.com/docs/DOC-7511

VMWare Developer SDKs:
http://communities.vmware.com/community/developer/

vSphere Perl SDK:
http://communities.vmware.com/community/developer/forums/vsphere_sdk_pe

rl

RCLI guide (here, for esxcfg-cfgbackup):
http://vm-help.com/esx/esx3i/esx_3i_rcli/vicfg-cfgbackup.php

Technodrone - VMWare focused blog:
http://technodrone.blogspot.com/2010/04/esxi-deployment-solution-

beginning.html

Hive Technical Note: Diskless ESX Install

(C) Thoughtful Solutions Ltd 2009-2010 Page 11 of 14
Distributed under a Creative Commons Attribution-Share Alike License:
http://creativecommons.org/licenses/by-sa/2.5/

Appendix A: Sample ESX configuration script

#!/usr/bin/perl

use warnings;

use strict;

use Params::Validate;

use Data::Dumper;

use VMware::VIRuntime;

use VMware::VILib;

use Log::Log4perl qw(:easy);

Log::Log4perl->easy_init($DEBUG);

my $log = Log::Log4perl->get_logger();

$log->debug("Starting...");

The IP address and host given here directly specify the

ESX server to configure.

When using a listening midwife process, these might instead

be passed in as command line parameters.

my $connect_ip = '10.1.4.101';

my $connect_host = 'vapp1.test.example.com';

my $default_pw = '';

my $hosts = {

 'vapp1.test.example.com' => {

 license => '0A12B-3CD4E-F5678-9012G-3H45I',

 rootpw => 'b0gu$pw!',

 vswitches => [

 {

 name => 'vSwitch1',

 physical_adapters => ['vmnic1'],

 num_ports => 64,

 }

],

 portgroups => [

 {

 name => 'sproingnet',

 vlan => 0,

 vswitch => 'vSwitch1',

 }

]

 }

};

$log->trace(Dumper($hosts));

Hive Technical Note: Diskless ESX Install

(C) Thoughtful Solutions Ltd 2009-2010 Page 12 of 14
Distributed under a Creative Commons Attribution-Share Alike License:
http://creativecommons.org/licenses/by-sa/2.5/

$log->debug("Creating new ESX session for ${connect_ip}");

my $esx_session = Vim->new(service_url => "https://${connect_ip}/sdk");

$log->trace(Dumper($esx_session));

eval {

 $log->debug("Logging in as root");

 $esx_session->login(

 user_name => 'root',

 password => $default_pw,

);

};

if($@) {

 if($@ =~ /incorrect user name or password/) {

 # Try logging in with the new password instead - we may have

 # been here before.

 $log->warn("Couldn't log in with default password - ".

 "trying the new password in case it's already set"

);

 $esx_session->login(

 user_name => 'root',

 password => $hosts->{ $connect_host }->{ rootpw },

);

 $log->debug("The new password worked out");

 } else {

 $log->error($@);

 exit -1;

 }

}

$log->debug("Finding HostSystem entity view");

my $host_view = $esx_session->find_entity_view(

 view_type => 'HostSystem',

 filter => {

 name => $connect_host,

 }

);

$log->trace(Dumper($host_view));

Update networking

$log->debug("Getting networkSystem object");

my $networkSystem = $esx_session->get_view(

 mo_ref => $host_view->configManager->networkSystem

);

$log->trace(Dumper($networkSystem));

$log->debug("Setting up virtual switches:");

Hive Technical Note: Diskless ESX Install

(C) Thoughtful Solutions Ltd 2009-2010 Page 13 of 14
Distributed under a Creative Commons Attribution-Share Alike License:
http://creativecommons.org/licenses/by-sa/2.5/

foreach my $vswitch (@{ $hosts->{ $connect_host }->{ vswitches } }) {

 $log->trace(Dumper($vswitch));

 # A bridge connects the virtual switch to a real device.

 my $vswitchBridge = HostVirtualSwitchBondBridge->new(

 nicDevice => $vswitch->{ physical_adapters },

);

 # We create a spec to pass to the AddVirtualSwitch method

 $log->debug("Creating HostVirtualSwitchSpec object");

 my $vswitchSpec = HostVirtualSwitchSpec->new(

 numPorts => $vswitch->{ num_ports },

 bridge => $vswitchBridge,

);

 $log->trace(Dumper($vswitchSpec));

 # Then the real work

 $log->debug("Adding virtual switch");

 $networkSystem->AddVirtualSwitch(

 spec => $vswitchSpec,

 vswitchName => $vswitch->{ name }

);

 $log->debug("Done");

}

$log->debug("Setting up portgroups");

foreach my $portgroup (@{ $hosts->{ $connect_host }->{ portgroups } }){

 $log->trace(Dumper($portgroup));

 $log->debug("Creating HostNetworkPolicy");

 my $hnPolicy = HostNetworkPolicy->new();

 $log->debug("Creating HostPortGroupSpec");

 my $hpgSpec = HostPortGroupSpec->new(

 name => $portgroup->{ name },

 policy => $hnPolicy,

 vlanId => $portgroup->{ vlan },

 vswitchName => $portgroup->{ vswitch },

);

 $log->debug("Adding the port group");

 $networkSystem->AddPortGroup(portgrp => $hpgSpec);

 $log->debug("Done");

}

Hive Technical Note: Diskless ESX Install

(C) Thoughtful Solutions Ltd 2009-2010 Page 14 of 14
Distributed under a Creative Commons Attribution-Share Alike License:
http://creativecommons.org/licenses/by-sa/2.5/

Update root password

$log->debug("Getting accountManager object");

my $accountManager = $esx_session->get_view(

 mo_ref => $host_view->{ vim }->{ service_content }->accountManager

);

$log->trace(Dumper($accountManager));

$log->debug("Creating HostAccountSpec object for root user");

my $haSpec = HostAccountSpec->new(

 id => 'root',

 password => $hosts->{ $connect_host }->{ rootpw },

);

$log->trace(Dumper($haSpec));

$log->debug("Updating the user object");

$accountManager->UpdateUser(user => $haSpec);

$log->debug("Success");

Update the license - do this last because other API calls

fail on the ESXi Free license but work with the default 60 day

trial license.

$log->debug("Getting licenseManager object");

my $licenseManager = $esx_session->get_view(

 mo_ref => $host_view->configManager->licenseManager

);

$log->trace(Dumper($licenseManager));

$log->debug("Updating the license key");

$licenseManager->UpdateLicense(

 licenseKey => $hosts->{ $connect_host }->{ license },

);

$log->debug("Success");

