
Hive Technical Note: Versioned Infrastructure Templates

(C) Thoughtful Solutions Ltd 2009-2010 Page 1 of 10
Distributed under a Creative Commons Attribution-Share Alike License:
http://creativecommons.org/licenses/by-sa/2.5/

Versioned Infrastructure Templates

Authors:
Jennifer Beattie
Edmund Sutcliffe

Hive Technical Note: Versioned Infrastructure Templates

(C) Thoughtful Solutions Ltd 2009-2010 Page 2 of 10
Distributed under a Creative Commons Attribution-Share Alike License:
http://creativecommons.org/licenses/by-sa/2.5/

Summary
This document discusses the motivation for using a version control system to manage all

the files involved in an automatically provisioned infrastructure. It also provides a brief

introductory recipe for configuring a new Subversion installation, with secure DAV

access over HTTPS.

Finally, it builds on previous documents in this series to provide sample scripting

methods to automatically rebuild a diskless NFS root image, in a side-by-side versioned

environment.

Overview
Previous documents in this series have discussed how to build a diskless PXE

environment, to enable the very rapid provisioning of new servers, with a guaranteed

identical build due to automation.

When changes are needed, a diskless environment gives the advantage that the changes

only have to be made in one place, and any server can automatically pick them up.

However, if you want to maintain multiple versions of an image, or roll back to previous

versions of your environment, you need a mechanism to track changes, and a version

control system is the natural choice to control this process.

Therefore:

• We assume use of Subversion as a simple and reliable centralized version control

system.

• We assume that the files that make up the set of automated "build tools" are
checked into Subversion on a specific managed server, so that the build machine

only needs to have a Subversion client installed, in order to extract the desired

version of the build scripts from the repository.

• We need a mechanism for these tools to build multiple versions of the

environment side by side. We show a script fragment that simply advances a

version number with each build run.

• We need a mechanism for each VM to choose a particular NFS root image to boot

from. We assume that this will be mapped into the DHCP root-path settings.

We briefly describe each of these aspects in this document.

Prerequisites
You must have a build machine with a PXE boot environment installed as per an earlier

document in this series, the Hive PXE Install document.

You must have a ESXi bootable target server to disklessly boot, and have DNS set up

with records for the boot server and target server names.

Hive Technical Note: Versioned Infrastructure Templates

(C) Thoughtful Solutions Ltd 2009-2010 Page 3 of 10
Distributed under a Creative Commons Attribution-Share Alike License:
http://creativecommons.org/licenses/by-sa/2.5/

Filesystem Paths and Network Addresses
Several of the pathnames used in this install process are configurable. This document

assumes particular locations for these, and for ease of reading, the explanations below use

these paths without qualifying them as potentially variable names.

The following paths are used as standard:

TFTP root directory /tftpboot

NFS base directory /data/bootimage

HTTP boot server filesystem location /data/bootserv

CentOS HTTP repository root /data/bootserv/centos

Subversion repository on client /data/buildtools

Subversion repository on server /var/svn/BuildTools

The network topology is assumed to be on a private network 10.1.4.0/24 in this

example. The machines being created are intended to be part of a domain

test.example.com.

We further assume that the build machine will be acting as the DNS nameserver for the

local network, and this is reflected in the resolv.conf file we create. The build machine

itself is named core in this example (ie core.test.example.com) and is assumed to be

on 10.1.4.1.

Installing Subversion on CentOS
In this section we briefly describe how to set up a Subversion repository on a server for

our build scripts. It is crucial to remember that the build machine will primarily be a

Subversion client in this scenario, requesting the latest available version of the build

scripts.

The Subversion server containing the build scripts can be on any machine, and can

indeed be a service in the cluster. Equally, one can start by creating a repository on the

build machine itself.

When this document refers to /var/svn/BuildTools, and the Apache configuration

steps, we are discussing the Subversion server, no matter where it is located.

When we refer to /data/buildtools, we are referring to the build machine, pulling the

latest versions of the build template from the Subversion server in order to build new

system images.

Hive Technical Note: Versioned Infrastructure Templates

(C) Thoughtful Solutions Ltd 2009-2010 Page 4 of 10
Distributed under a Creative Commons Attribution-Share Alike License:
http://creativecommons.org/licenses/by-sa/2.5/

Subversion install and repository creation

Subversion v1.4.2 is provided with CentOS5, which is a sensible baseline (at the time of

writing, the latest stable release is v1.6.11).

This makes installing it on the Subversion repository server, even fronted with Apache,

rather easy:

The svn and svnadmin utilities will be installed into /usr/bin so should become

immediately available on your PATH.

Next we create a directory to store the repository, and then create a new repository. Of

course, it is critical to ensure that this directory is under a proper backup regime.

This should leave you with contents of the BuildTools directory looking like this:

[root@core build]# ls -alh /var/svn/BuildTools/

total 32K

drwxr-xr-x 6 root root 4.0K May 24 03:10 .

drwxr-xr-x 3 root root 4.0K May 24 03:10 ..

drwxr-xr-x 2 root root 4.0K May 24 03:10 conf

drwxr-sr-x 6 root root 4.0K May 24 03:10 db

-r--r--r-- 1 root root 2 May 24 03:10 format

drwxr-xr-x 2 root root 4.0K May 24 03:10 hooks

drwxr-xr-x 2 root root 4.0K May 24 03:10 locks

-rw-r--r-- 1 root root 229 May 24 03:10 README.txt

yum -y install subversion httpd mod_dav_svn

mkdir -p /var/svn
svnadmin create /var/svn/BuildTools

Hive Technical Note: Versioned Infrastructure Templates

(C) Thoughtful Solutions Ltd 2009-2010 Page 5 of 10
Distributed under a Creative Commons Attribution-Share Alike License:
http://creativecommons.org/licenses/by-sa/2.5/

Directory permissions for Apache access

We assume that we'll create a role user called svn to own the Subversion tree, but the

user that Apache runs as (by default, www) must also have write access to this tree to

enable DAV access, so we make the Apache user a member of the svn group and set the

sticky bit on the tree.

It's also critical to ensure that Apache (running as www) creates new files in the repository

with group access so that any other member of the svn group (eg the svnserve process)

can still write to them.

Therefore we have to change the umask for Apache, and unfortunately the only sensible

way to do that is to put a line at the top of the /etc/init.d/httpd script:

umask 002

Look at http://svnbook.red-bean.com/en/1.0/svn-book.html#svn-ch-6-sect-5

for more on this topic.

groupadd -r svn

useradd -g svn -r svn

chown -R svn.svn /var/svn

chmod -R g+rwxs /var/svn

chmod -R o-rwxs /var/svn

usermod -G svn www

Hive Technical Note: Versioned Infrastructure Templates

(C) Thoughtful Solutions Ltd 2009-2010 Page 6 of 10
Distributed under a Creative Commons Attribution-Share Alike License:
http://creativecommons.org/licenses/by-sa/2.5/

Self-signed SSL certificate creation for secure HTTPS access

We ensure openssl is installed, then use it to generate a new private key, followed by a

certificate signing request (representing the desired identity of the certificate holder).

We then sign the request ourselves to immediately produce a self-signed certificate. This

has the advantage that it is free and immediate, although clients connecting will need to

accept the resulting certificate. Alternatively, a certificate could be issued by an

enterprise Certificate Authority or a public CA such as Verisign.

The commands below produce a private key that is not encrypted. Therefore it must be

securely stored, or encrypted with a passphrase using one of the -des* or -aes* options

to the openssl command.

The certificate request command will prompt you to enter suitable fields for the

certificate, for example GB or US for the country code. The Common Name you enter

when asked, must match the hostname that you will eventually use to access the server.

You can then produce a self-signed certificate like this:

You can check a textual representation of the generated key, request and certificate files

with the following commands:

The svn.key and svn.crt files can then be used in the Apache config to enable SSL

access.

cd /var/svn

openssl genrsa -out /var/svn/svn.key 1024
openssl req -new -key /var/svn/svn.key -out /var/svn/svn.csr

openssl x509 -req -in /var/svn/svn.csr -out /var/svn/svn.crt \
 -signkey /var/svn/svn.key -days 999

openssl rsa -noout -text -in /var/svn/svn.key

openssl req -noout -text -in /var/svn/svn.csr
openssl x509 -noout -text -in /var/svn/svn.crt

Hive Technical Note: Versioned Infrastructure Templates

(C) Thoughtful Solutions Ltd 2009-2010 Page 7 of 10
Distributed under a Creative Commons Attribution-Share Alike License:
http://creativecommons.org/licenses/by-sa/2.5/

Apache configuration for Subversion access

The following aspects must be present in your Apache configuration.

The mod_dav, mod_dav_fs, mod_dav_lock, mod_dav_svn and mod_authz_svn modules

must be loaded, plus of course the SSL module, so the following config lines are needed:

LoadModule ssl_module modules/mod_ssl.so

LoadModule dav_module modules/mod_dav.so

LoadModule dav_fs_module modules/mod_dav_fs.so

LoadModule dav_lock_module modules/mod_dav_lock.so

LoadModule dav_svn_module modules/mod_dav_svn.so

LoadModule authz_svn_module modules/mod_authz_svn.so

The basic SSL configuration directives must be present; in CentOS these can be

configured in /etc/httpd/conf.d/ssl.conf .

Inside the SSL virtual host stanza, configure the certificate:
SSLCertificateFile /var/svn/svn.crt

SSLCertificateKeyFile /var/svn/svn.key

You can then configure a Subversion managed URL path, for example /svn , like this:

<Location /svn>

DAV svn

SVNPath "/var/svn/BuildTools"

AuthType Basic

AuthName "BuildTools"

AuthUserFile /var/svn/svnusers.db

Require valid-user

</Location>

LimitXMLRequestBody 0

The svnusers.db file is then expected to be an Apache htpasswd format file which you

can configure as you wish, or change the auth directives to integrate with other systems.

At this point you should be able to restart Apache, and visit your server (for example,

buildtools.test.example.com), at a URL like
https://buildtools.test.example.com/svn

either in a browser, a Subversion GUI client, or from the command line.

In each case you will need to accept the self-signed certificate, but can then proceed to

check in managed build files.

In the remainder of this document, we assume that you create a project named BuildTools

inside this repository, so that the eventual code URL to check out from is
https://buildtools.test.example.com/svn/BuildTools/

We also assume that you create an automated build user named build to gain access to

the repository, using the Apache htpasswd utility.

Hive Technical Note: Versioned Infrastructure Templates

(C) Thoughtful Solutions Ltd 2009-2010 Page 8 of 10
Distributed under a Creative Commons Attribution-Share Alike License:
http://creativecommons.org/licenses/by-sa/2.5/

Automated Build Scripting
We assume that the build machine has the Subversion command line client installed via

yum install subversion .

There are many methods and tools that could be used to run automated builds (and indeed

we recommend using a continuous integration tool such as Hudson to control this

process). In this document, therefore, we will merely show the core mechanics of this

process.

Automated checkouts

We also assume that we will maintain an up to date copy of the build tools in
/data/buildtools/current
from the repository in
https://buildtools.test.example.com/svn/BuildTools

using a Subversion automated userID called build .

This can be achieved by periodically running:

which will ensure that we always run our builds from the latest official source.

SVNUSER=build

SVNPASS=b0gus

if [-d /data/buildtools/current]; then

 svn update --non-interactive --trust-server-cert \

 --username $SVNUSER --password $SVNPASS \

 /data/buildtools/current

else

 svn co --non-interactive --trust-server-cert \

 --username $SVNUSER --password $SVNPASS \

 https://buildtools.test.example.com/svn/BuildTools \

 /data/buildtools/current
fi

Hive Technical Note: Versioned Infrastructure Templates

(C) Thoughtful Solutions Ltd 2009-2010 Page 9 of 10
Distributed under a Creative Commons Attribution-Share Alike License:
http://creativecommons.org/licenses/by-sa/2.5/

Side by side build images

Whereas previously we built our NFS root image directly under /data/bootimage/ ,

now we wish to have multiple root images side by side so that we can roll forwards and

backwards in each environment.

To this end, we will adopt a new convention and move the images down one level,

inserting a build number into the path. For example, build number 437 will be found

under: /data/bootimage/437/

Our automated build script can generate a new build number by running:

MAXBUILD=`ls /data/bootimage | grep -E -e '[0-9]+' | sort -r | head -1`

BUILDNUM=`expr $MAXBUILD + 1`

BUILDROOT="/data/bootimage/$BUILDNUM"

mkdir -p $BUILDROOT

echo "Creating new build number $BUILDNUM in directory $BUILDROOT"

This simply finds the maximum existing numeric format directory name in

/data/bootimage and adds one to it to form the new name.

At this point, our automatic build script can run through the steps that were outlined in

our previous Hive Diskless CentOS Install document, to produce a fresh root image in

an automated fashion.

Of course, it is also possible to use a variety of build systems to assist in achieving this

end, such as Puppet (http://www.puppetlabs.com/) and Chef

(http://www.opscode.com/chef/).

Depending on your environment, you might of course have a human-controlled procedure

for naming particular builds to be promoted, but here we assume that the build machine

will emit new build images directly into the /data/bootimage directory.

Hive Technical Note: Versioned Infrastructure Templates

(C) Thoughtful Solutions Ltd 2009-2010 Page 10 of 10
Distributed under a Creative Commons Attribution-Share Alike License:
http://creativecommons.org/licenses/by-sa/2.5/

Versioned Image NFS Booting
Finally, we need a mechanism to ensure that different hosts in our environment can use

different build images.

We assume that the provisioning process for new machines will control their identities

and IP addresses via the PXE and DHCP servers for this environment, and in both cases

we can control the NFS root path on a per-server basis, depending on which mechanism

we use to pass the root path variable:

In /tftpbootpxelinux.cfg/default :
label centos-diskless

 kernel vmlinuz

 append initrd=initrd.img load_ramdisk=1 network root=/dev/nfs \

 NFSROOT=10.1.4.1:/data/bootimage/437

In a PXE server, we can create additional PXE menu files matching the MAC address or

IP address of each server, and individually change their boot paths if needed.

In a DHCP environment, we can update the root-path option, and if needed we can

divide the hosts into different groups depending on the build they require:

deny unknown-clients;

not authoritative;

 ... other default options here ...

group {

 next-server 10.1.4.1; # Name of your TFTP server

 filename "pxelinux.0"; # Name of the bootloader program

 option root-path "10.1.4.1:/data/bootimage/437";

 host vapp1 {

 option host-name "vapp1.test.example.com";

 hardware ethernet 00:0c:29:01:02:03;

 fixed-address 10.1.4.101;

 }

 host vapp2 {

 option host-name "vapp2.test.example.com ";

 hardware ethernet 00:0c:29:04:05:06;

 fixed-address 10.1.4.102;

 }

}

In either case, we can partition the set of nodes in our environment to use the required

build, and rollback of a given node is as simple as changing a single text line and

rebooting the affected node.

