
Agile infrastructure and operations: how infra-gile are you?

Patrick Debois
Supporting Open Source
Patrick.Debois@sos.be

Abstract

Some have described Agile and Infrastructure as an
oxymoron: they just don’t fit together. During one year
we have focused on using agile techniques in three
different infrastructure related projects. From a unique
infrastructural point of view, we will show that the
term ‘agile infrastructure’ consists of multiple layers.
To become effective, each layer needs to be addressed.

1. Case 1: Datacenter Migration

1.1. Application junk yard

Our first project was the construction of a new

datacenter infrastructure. The production environment
contained several unfinished, non-production ready
applications. A lot of these applications had been
forced onto the datacenter infrastructure: the
development of a new application always exceeded the
deadlines.

As usual in large enterprises, development,
infrastructure and operations were separate groups.
Development and infrastructure would work in
isolation on a project and would integrate just before
the political deadline to present the application to
operations. Then there was no time left to fix things.

A new datacenter would allow to cleanup the
situation by migrating the old applications to a new
more controlled environment.

1.2. A new infrastructure, a new hope

A group of architects was assigned to describe the

requirements of this new datacenter. They focused on
the new design and came up with current state of the
art improvements: new development frameworks, new
application servers, scalable infrastructure would buy
new and more powerful machines. For managing the
datacenter, ITIL would be introduced as a process.

They would only release their datacenter to new
applications after every system or process was

completely detailed. Rolling out an application would
be just a simple case of following the new guidelines.
They felt no need to talk to the different projects, as
their environment would be generic to all applications.

New applications were to go directly onto the new
datacenter. Because the task of describing the new
datacenter was taking longer then foreseen, new
projects were delayed instead of advancing. The
president of the company became nervous and
expressed it like this: “I don’t care if it is not finished
but there has to be something and then you can
continue to make things better afterwards.” A small
taskforce would get things going.

1.3. Change of mindset

While investigating application-testing criteria, the

taskforce came across several agile inspired concepts
like test-driven development and Scrum. Most of the
literature involved the development process, but they
could only control the infrastructure process.

Scrum as a project methodology was not necessarily
related to development. There seemed to be a perfect
match between the idea of iterative design and the
demand of the president: every sprint you would have
new working release and it would constantly improve.
They would experiment to see that agile concepts
would indeed work for infrastructure projects.

1.4. Applications as customers

Instead of building a generic datacenter, the

taskforce contacted each project leader to get involved
in the project meetings. Each application was seen as a
customer for the datacenter. This way, they started to
compile their backlog, with different priorities
assigned. The interaction also allowed them to better
understand the needs of their projects, which were their
customers. Projects became aware of the shared nature
of the infrastructure and better understood the
problems of scheduling. Also the taskforce could point
out several non-functional requirements like security,
performance, logging, monitoring that had not been

taking into account. An initial list was compiled and
the priorities for the next two weeks were discussed:
the content of their first sprint.

1.5. A minimal working environment

The main focus of the taskforce was to start
building a temporary environment that could host the
new applications, until the new datacenter was ready.
A minimal working environment would typically
require several weeks as lot of different groups had to
interact: servers, networking, monitoring, storage and
new hardware was still on order.

One by one, they started to overcome the
dependencies. Missing DNS servers were compensated
by using host files. Servers instead of routers did
routing. The use of VLAN tagging on interfaces
allowed them to overcome the lack of network ports.
Load balancing and SSL Termination were performed
in software instead of hardware. Internal Disks were
used for data to make up the missing storage arrays.
These solutions were not final, and would be replaced
once there definitive solution became available. But at
least it was a working environment.

1.5. Deploy often

 The delivery of the first sprint would be tested by a

successful deployment of the first application. This
was again a disaster: several configuration files were
missing, the developers were working on another
version of the database, and there was no monitoring.
These were typical discussions in the past. The
difference was that now because they still had time
before the actual deadline, they could try the
deployment again. In the mean while the infrastructure
would also be improved in parallel. After three test
deployments the benefits were clear: a lot less
integration problems. The application went live and
even during production this improvement process
continued. Every release they would improve both the
software and the infrastructure.

1.6. Service Levels Agreements

The incremental approach resulted in an interesting

side effect: In the past when the application would go
live, a Service Level Agreement would be negotiated
between the customer and the external partner.
Because this was the document that described when
penalties should be paid, this document often provoked
huge discussions. With the new incremental approach,
when was the application now finished? The SLA
managers had not been in the discussion loop. Even

with significant improvements the operations would
not sign of the acceptance, as it was unclear when the
application or infrastructure was finished.

2. Case 2: Disaster Recovery

2.1. Technical debt

Our next case was focused on disaster recovery: a

company had experienced several outages and money
was lost. Infrastructural updates had been postponed
because the impact was not predictable on the
uncontrolled environment, resulting in a large technical
debt. Again the idea was that a migration to a new
hardware platform would solve these problems. The
manager already had good experiences with Scrum
used by a development group and decided that the
infrastructure group would use it.

2.2. Group versus Team

The group consisted of five persons where each

person had its own specific expertise:
networking/security, desktop/office, servers and
storage, application and middleware. Each person
compiled a list of items that he felt were necessary to
improve the situation. They would call this list their
product backlog. Their manager put priorities on the
list and the first sprint was defined by the question:
what can you finish within two weeks? Group
estimation did not work well, because often only one
person could actually tell something about a certain
task.

2.3. Tasks and tickets: a deadly cocktail

During the first sprint it became clear that incidents
would often overrule the planning of a team member.
For every incident there was a ticket logged. A new
task was created on the Scrum-board called ‘Legacy’.
This would host all the emerging incident tasks. After
the first sprint the board was full of this small tasks.
Analyzing the list of tickets would give a better
understanding of how much time should be allocated
for incidents and how much time was left for the
improvement project.

The list of tickets turned out to be a mix of service
requests, problems and incidents. Instead of planning
these requests they were just thrown in the list of
incidents. Projects took advantage of this and
introduced new work or last minute changes as an
incident, hard to be refused. Also team members took
advantage of this, they would relate their own interests
to incident, in a way to work on more interesting tasks.

2.4. Priority rules

 To get a better overview, the tickets were reviewed
and split in incident, improvement and project. In order
to give focus to the group, the manager decided that the
correct order would be, incidents first, secondly the
improvement list and then helping projects. The
reasoning was that once the improvement list was
done, helping projects would be easy.

When project managers asked a status on their
ticket, they were answered that they were not on the
list for the next two weeks. Some started to ask
exceptions to the manager, which often had to comply
with their requests. Others changed tactics and came in
person to the infrastructure team and used social
pressure. On the Scrum board priorities changed every
day, the project that shouted the hardest would get
priority number one and focus was lost.

2.5. Trying to please more masters

Instead of deciding on the priorities in the next
sprint-planning meeting, the manager invited all the
project managers. When they saw the extensive
backlog they started to understand why they were
seeing the delays. They only had knowledge of their
own project and not on the global list. In the
infrastructure group everything came together.

The product backlog was reordered in a way to
please every project. Eventually, this required the
presence of a general manager, otherwise all projects
including the infrastructure improvement project,
would schedule themselves as the most important
project. Now the team had one product owner instead
of many.

To increase the resources, the infrastructural team
was expanded with resources from the test and
middleware team. These extra resources already had
affinity with infrastructure and were used to work in
project mode. The project tasks moved to the new team
members, incidents and improvements stayed with the
original team members.

2.8. We don’t need another graveyard

During the next sprints, the work of the
improvements did not advance, as these team members
were still continuously overruled by incidents. The
project related tasks, became dependent on the new
environment. It would only be ordered if the design
was completely finished and all details had been
described.

In contrast, the project oriented people used
virtualization on servers with spare capacity to
accommodate the new applications. With every sprint
they would improve a small temporary environment
based upon the new application needs.

2.9. Agile versus Waterfall

Most projects would use Prince2 as their

management style. One project used Scrum for their
development. The Scrum managed project only asked
what would change the next sprint and incorporated the
changes into their product backlog.

The more traditional oriented project managers
complained about the new incremental way of
working: their developers had to constantly adapt their
code according to the changes in the environment,
these changes were not foreseen and resulted in
additional work. They did not have easy ways to
change their code and did not practice test driven
development. They took the ever changing
environment as a sign of incompetence even when it
was improving over time.

2.10. Not everybody sees the big picture

 The operational people were still present in the

daily Scrum but they were becoming less and less
interested: their day consisted of closing incidents and
not helping projects. They did not agree that the project
priorities were their priorities: they would install new
servers/versions even if it was not the overall priority.
They assumed their job was improving the
infrastructure not on creating business value by new
projects. Why did the improvements never made it to
the top of the list?

This permanent discussion about priorities was
increasing the tension between the
infrastructural/operational manager and the overall
manager. People really started to suffer from their
small war. And even worse the discussion became
personal and the operational manager resigned.

 The overall manager introduced again the roles and
responsibilities game: everyone in its own part and let
me control the flow who does what. And stop this
communication culture. The whole experience was
buried within a month. Eventually they set up a new
infrastructure and within the first weeks it was showing
the same instabilities as the old platform. No use for
doing a disaster recovery project if your problem lies
beyond the technical problem.

3. Case 3: Application Server Upgrade

3.1. Shared software as part of infrastructure

In our third case a company that had been working

several years in Scrum project mode was migrating to a
new version of the application server. The developers
had identified this as the solution for the performance
problems. A task easy enough as running a wizard with
next, next , next was taking a lot longer then foreseen:
the monitoring system needed to be adapted, all
security needed to be tested, and what about the high
availability. This simple application server depended
on a lot of shared infrastructural components. A small
audit was started to enlist further improvements.

3.2. Production and test: similar?

Doing the upgrade in the development and test

environment had been easy. The production
environment was a lot more complex with clustering
and management tools then had been installed in the
test environment. The infrastructure had been set up at
the early stages of the agile process within the
company. It had been designed as a generic
infrastructure and without knowing the real
applications it had suffered from a featuritis: it
included every bell and whistle that could be included
because at the moment of build the requirements were
not clear to the infrastructure group as both parties
worked in two separate groups.

3.3. The whole stack please

Another difference was that the test and
development were running in virtual environments,
using light configurations of the application server to
overcome the lack of machine resources. They used a
newer version of the operating system. It would make
sense to upgrade the OS together with the Application
Server. Upgrading the OS would mean new monitoring
and backup agents. But at least now the same JVM,
JDBC drivers and database version could be used.

By extending the existing deployment scripts, the
whole installation of a new virtual machine including
OS, JVM, Application server, JDBC Drivers,
application could be recreated. This would allow the
inclusion of patches on each level to be tested every
iteration. Integrated patching would prevent production
surprises. During an interview on how to improve
things, everybody remembered the iteration with the
seven hotfixes and did not want this to repeat that
nightmare.

3.4. Tracking changes and their impact
The problem with these integration scripts is that

they need to be maintained, if the infrastructure is
dedicated for the project then this does not pose so
much of a problem. In a production environment often
network, storage, monitoring and security are shared.
And this means that all projects have to take note and
investigate the impact of these changes. Often this had
given problems, things had been changed in the
production due to other projects and the prediction of
the test environment had not been proved useful.

A production architect could track these changes as
part of his job description. The operational manager
became very interested because this would be a kind of
gatekeeper. The agile project group understood very
well the idea but they had abandoned the architect-only
idea already a long time. Several discussions later it
became clear that the candidate for this job needed to
be neutral for both operations and project and that
could only happen he worked aside the operational and
project manager. Nobody from the existing group
would be found neutral enough. Instead of assigning
the responsibility to one person , the task was assigned
to the infrastructural group within the project as a go
between.

3.5. 80% project , 20% operational trap

Two infrastructure persons were assigned 80% to
the project and 20% for other work. They performed
the infrastructural work to support other team members
but did not take part in the daily scrum meetings or did
not work on part of the backlog, because their work
just seem to fall off the list as miscellaneous. In reality
they were somewhere in between project and
operations mode, being driven by two different
managers and they felt they always had to decide what
needed priority. They also felt sorry for the project if
they could not deliver what they had promised. The
team felt that they were not committed enough
sometimes. So they worked hard to try to please both
groups.

While discussing the product backlog, their work
was not listed as it did not create any direct business
value. The customers mainly expressed new
functionality and not infrastructural work. The next
sprint planning meeting their work would be put on a
separate product backlog: the application/developers
group would become their customers for their user
stories. On the same backlog they could suggest tasks
to improve the infrastructure making their work visible
to the customer. These tasks would include an estimate
of the value that would be lost if things were not
improved.

3.6. Joined design and estimates

During the migration the developers had done most

of the initial design of the migration and that while
they were comfortable with the new technologies, the
infrastructural group came in the end. They had to
learn the new versions under pressure of deadlines and
commitments taken by the development project group.
While these deadlines were a group commitment, the
infrastructural people had not been consulted during
the time of estimation and design. Once the task list
grew developers started to see that there was a lot more
than they could think of. This was not to gain time, just
that they were not aware of all this dependencies. In
the next design meeting the infrastructural people
would be called in the meeting to have their ideas. Not
anyone has an overview on everything but making it a
group effort would compensate for this.

3.7. Who’s the boss?

After making their work visible it became clear they
were becoming crucial for a good flow to production.
The operation manager was afraid of loosing the
additional theoretical 20%, it was hard to find people
with an affinity in both infrastructure and applications.
Infrastructure people often saw applications as a
nuisance, which is strange as the applications of bring
in the value for the company. But changes by
applications and projects increase the instability of the
environment. The discussion between both managers
was escalated and priorities needed to be addressed at
the global company level and not on the local levels of
one project or operations.

3.8. Flow is more important then backlogs

While solving all the problems at the technical and
project level this company was still struggling with the
operations and project conflict. Once they take this
hurdle they will reach a new level of agile
infrastructure. Instead of focusing on the local
optimizations, they are now investigating new concepts
like Kanban in order to get the flow going through the
whole company. This would allow them to bring both
their projects and operations in a rhythm that works.

4. Observed Patterns

In all three cases we discovered several patterns. We
have grouped these patterns in three categories:
Technical, Project and Operations. Technical relates to
hardware and software used in the environment.

Project is about the process that introduces the changes
into the environment. Operations is the process of
keeping the environment working. We consider this the
three layers that Agile infrastructure relates to.

4.1. Technical

• A ‘technical’ migration is seen as the solution
for years of problems.

• Technical migrations are enablers for the agile
process and often use virtualization and
automation techniques, converting the static
infrastructure in agile enabled infrastructure.

• The use of these techniques requires new
technical skills to be acquired.

• The infrastructure toolkit is not yet as
extensive as the developer’s toolkit f.i. for
refactoring, so it is important to have some
guidance to avoid a lot of refactoring for the
basis architecture.

• Replacing all the hardware will not solve the
problem. It will create a new ‘uncontrolled’
environment if only the platform is replaced.

• Non-agile infrastructure tends to grow old
because changes are hard to execute in these
environments. This can be seen as technical
debt.

• A small environment can create enough space
for a conversion process to take place. Often
there is enough ‘loose’ hardware available to
sparkle a new usage.

• Continuous build servers, test servers, code
coverage tools and versioning servers are also
part of the infrastructure and the
infrastructural people can take care of these
too. This will allow them to build up affinity
with the developers’ environment.

• Even scripts used by the infrastructure people
benefit from a versioning system like CVS.

4.2. Project

• Technical skills need to be complemented
with an agile mindset. Similar to the technical,
to speed things up have experienced agile
project managers guide the process.

• Development and infrastructure need to be
seen as whole and not two separate projects.
This is especially difficult in large enterprises
where both belong to different entities.

• Design of the developments needs to include
infrastructural and operational design to easy
integration.

• Otherwise each project will create a local
optimum but the company optimum is never
achieved; Service Level Agreements (SLA’s)
express requirements that need to be included
in the backlog.

• Every change will eventually require a
management buy-in to allow it to persist.

4.3. Operations

• After the project finishes the operational

group will benefit from the test and
integration environment: In contrast with
project mode it is now the environment that
changes due to security patches or new
versions.

• Infrastructural people often have strong
bounds with the operational part of the
company.

• Operations do not work in project mode and
when including staff or dependencies will
make you project unpredictable. Estimations
will not work, as incidents are unpredictable.

• People between project and operations will
loose focus and in the worst scenario can use
this to never having to finish tasks.

• Additional staffing in the operational group is
often not possible because they are perceived
as not adding value to the company. When
they are part of your deployment process their
availability is crucial.

• Projects can be overproducing for the
operations group: they are trying to optimize
their production process but often do not
consider the flow of the result through the
whole company and operations become the
bottleneck. Operations are traditionally the
place were multiple projects come together
and each project might not have a view on
other projects. Making this clear is crucial and
having agreement among project managers on
priorities is hard to achieve from a support
only perspective.

• Operations know very well that changes
introduce incidents. Therefore they think their
job is to minimize change to the production
environment. Still they serve the same
customer the project does. Therefore the
project should have a view on the demands
the customer puts on the operations.

• Changing your project process will have an
impact on the way SLA’s are discussed.

4.4 Conclusion

Successful introduction of Agile infrastructure consists
of addressing both the technical, project and operations
aspects. The technical part is the easiest, tools are
becoming mature and integrated and this what IT-
people most easily understand. Building on this
technical foundation, the infrastructural work can now
be integrated in the project. The hardest part is when
integrating with the unpredictable process of
operations and crossing the non-project boundary and
sharing operational resources with projects.

5. Further Reading

[1] Pritchett, Dan, Operational Manageability lessons
learned from eBay, 20 September 2007,
http://www.infoq.com/news/2007/09/operational-
mangeability
[2] Hendrickson, Elisabeth, You’re Kidding. It does WHAT in
Production !?!, 22 May 2007 ,
http://video.google.com/videoplay?docid=627761504105495
8810
[3] Wilson, Scot, Agile Operations , 27 September 2007 ,
http://www.indigomoonsystems.com/status/status.php?/archi
ves/259-Agile-operations.html
[4] Anderson, David J., Operations Review , 20 September
2007,
http://www.agilemanagement.net/Articles/Weblog/Operation
sReview-2.html
[5] Nicolette, Dave, Managing non-functional requirements
and enterprise standards, 30 December 2007
http://dnicolet1.tripod.com/agile/index.blog?entry_id=17766
42
[6]Berteig, Mishkin, Agile Infrastructure Projects, 28 May
2005
http://www.agileadvice.com/2005/09/28/agilemanagement/ag
ile-infrastructure-projects-lessons-learned/
[7] Gibbs, Ed , Agile With Infrastructure Projects , 14
January 2008, http://edgibbs.com/2008/01/14/agile-with-
infrastructure-projects
http://times.usefulinc.com/2006/06/17-agile-infrastructure ,
[8] Coon, Mike, Agile Infrastructure, 10 November 2007 ,
http://blog.mikecoon.net/2007/11/10/agile-infrastructure.aspx
[9] Agile 2006 Conference, Agile Infrastructure, 2006,
http://agile2006.stikipad.com/public/show/AgileInfrastructur
e
[10] Terry, Hamilton, Agile for Infrastructure, 2007,
https://www-
927.ibm.com/ibm/cas/archives/2007/workshops/workshop22.
shtml
 [11] Schiel, Jim, Scrum and an ‘operational’ team,
Scrumdevelopment mailing-list, 6 March 2008,
http://groups.yahoo.com/group/scrumdevelopment/message/2
7881
 [12] Debois, Patrick, Agile Infrastructure Operations ,
http://www.jedi.be/agille-infrastructure

