File System Organization

The Art of Automounting

Version 1.4

S
% sun

microsystems

Martien F. van Steenbergen
Sun Microsystems Nederland B.V.

Last modified on August 1, 1991 16:00

0 1991 by Sun Microsystems Nederland BV.
All artwork O 1991 by Nathalie Obst

All rights reserved. No part of this work may be reproduced in any form
or by any means—graphic, electronic or mechanical, including
photocopying recording, taping, or storage in an information retrieval
system or otherwise—without prior written permission of the respective
copyright owner.

The OPEN LOOK and the Sun Graphical User Interfaces were
developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and
developing the concept of visual or graphical user interfaces for the
computer industry. Sun holds a non-exclusive license from Xerox to the
Xerox Graphical User Interface, which license also covers Sun’s
licensees.

TRADEMARKS

The Sun logo, Sun Microsystems, Sun Workstation, NeWS, and SunLink
are registered trademarks of Sun Microsystems, Inc. in the United States
and other countries.

Sun, Sun-2, Sun-3, Sun-4, Sun386i, SunCD, Sunlnstall, SunOS, SunView,
NFS, and OpenWindows are trademarks of Sun Microsystems, Inc.

UNIX and OPEN LOOK are registered trademarks of AT&T.

PostScript is a registered trademark of Adobe Systems Incorporated.
Adobe also owns copyrights related to the PostScript language and the
PostScript interpreter. The trademark PostScript is used herein only to
refer to material supplied by Adobe or to programs written in the
PostScript language as defined by Adobe.

The X Window System is a product of the Massachusetts Institute of
Technology.

SPARC is a registered trademark of SPARC International, Inc. Products
bearing the SPARC trademark are based on an architecture developed
by Sun Microsystems, Inc. SPARCstation is a trademark of SPARC
International, Inc., licensed exclusively to Sun Microsystems, Inc.

All other products or services mentioned in this document are identified
by the trademarks, service marks, or product names as designated by
the companies who market those products. Inquiries concerning such
trademarks should be made directly to those companies.

LIABILITY

The ideas and opinions set out by the author in this document do not
necessarily reflect or represent the ideas and opinions of Sun
Microsystems Nederland B.V. or Sun Microsystems Inc.

Neither the author nor Sun Microsystems Nederland BV. accepts
liability for any possible damage arising out, or in connection with the
usage and application of the concepts specified in this document.

COLOFON

This document was made using FrameMaker 21 on a SPARCstation 2
GX in the OpenWindows 20 environment. Artwork was done by
Nathalie Obst, scanned and imported. Other illustrations are done with
FrameMaker. Body text is set in 10 point Palatino. Proof printing was
done on a 400 dpi SPARCprinter and the NeWSprint software.

The document layout is a mixture of that used in the Sun Desktop
SPARC Documentation and the Xerox Publishing Standards.

Contents
Preface v
Acknowledgments v
Introduction i
Who should read this document i1
How to use this document ii
Choosing a name for your computer 1-1
Don Libes” memo 1-1
Status of this memo 1-1
Abstract 1-1
Choosing a name 1-2
Conclusion 1-5
Credits 1-5
References 1-5
Security considerations 1-6
Author’s address 1-6
A sample configuration 1-6
System management as a real project 2-1
The system administration project directory 2-1
Revision control 2-2
SCCS versus RCS 2-2
Revision numbering scheme 2-2
General procedures 2-3
The art of automounting 3-1
The problem defined 3-1
Data classes and instances 3-2
Versions and variants 34
Putting it all together 3-4
How to set up your system 3-5
Partitioning disks 3-5
Mounting local file systems 3-6
Subdividing partitions 3-6
Exporting data 3-6
Importing data 3-7

File System Organization

iii

Application management 3-10
Application directory organization 3-10
Making the application’s commands available 3-11
Volumes for other purposes 3-13

General procedures 3-14
Adding a data class 3-15
Adding a data class instance 3-15
Summary: it is easy 3-17

A complete example: GNU Emacs 3-18
Set up the directory structure and export it accordingly 3-18
Read the Emacs distribution tape 3-19
Configure the automounter 3-19
Build it 3-20
Install it 3-20
Make the Emacs commands available 3-21
Make the manual pages available 3-21
Use it! 3-21

Summary 3-22

Conclusion 3-23

iv

The Art of Automounting

Preface

Much of the work described in this publication finds its roots in the
system administration concepts used for the Sun386i. One of the
documents related to the concepts that form the basis of the Sun386i
system administration is the Sun386i Cookbook.

Reading the cookbook learned that some nice concepts were wrought
out. However, my goal was to apply these concepts beyond the Sun386i
environment, better still, in a heterogeneous environment consisting of
Sun machines with different architectures, and even non-Suns. The
objective lead to simplification of the concepts that form the basis of the
Sun386i file system organization.

The conventions and guidelines laid out in this publication have been
implemented with success in a number of environments and have proven
to be very helpful, alleviating the confused view that users and system
administrators often have of their environment.

You may give copies of this document to others, provided the copyright
notice remains intact. You may use it, apply it, as long as you don’t sell
or publish it without prior written permission of Sun Microsystems
Nederland B.V.

I hope this document will be useful to others and I would welcome any
comments and suggestions that could improve the quality of this
document.
You can reach me via ordinary mail at
Martien F. van Steenbergen
Sun Microsystems Nederland B.V.
PO Box 1270
3800 BG Amersfoort
The Netherlands
or via electronic mail at
Martien.van.Steenbergen@Holland.Sun.COM!

or via telephone at

+31 33 501234

Acknowledgments

I would like to thank Hein Konert and Hans Bouw from Philips
Consumer Electronics, Eindhoven, Holland. At Philips, the initial draft
versions of this document and a publication with an even wider scope
than just file system organization were crafted during a consulting job in
1990.

I would also like to thank all my colleagues at Sun for their patience
and effort they’ve shown reviewing this document and for having me say
the things I had to say. Thanks to Dirk van Ginneken and Maarten

1 A more efficient way to reach me if you are in the Dutch region is via Martien.van.Steenbergen@sun.nl.

File System Organization

Preface Acknowledgments

Westenberg. I also would like to thank my manager, Mathieu Lebens, for
allowing me to spend the time and the effort to write this document.

And last but not least, special thanks to Nathalie Obst for creating the
artwork and reviewing the text on such a short notice.

vi The Art of Automounting

Now, where was it where
I could find that file?!

Simplicity

Consistency

Efficiency

Introduction

Wouldn't it be nice if, when working with computers on a day to day
basis, we had a general, uniform and consistent computing environment,
especially with respect to the file system layout. Furthermore, we would
also like this environment to be scalable from stand-alone systems to
large heterogeneous environments.

Besides that, one would also like to be able to use the available disk
space in the network as efficient as possible, avoiding fragmentation of
this valuable resource. It is very frustrating to discover that you cannot
save your file because a file system is filled up, while on other places in
the network more than 1 GB appears to be available!

Also, being able to find what you are looking for in the file system on
an intuitive fashion would reduce confusion in your user community.
Separating the various classes of data available on the network and
providing this data in a logical and consistent way reduces confusion and
requires less help from the system administration department. A
complete separation between private data (stored in home directories)
and more project related data would reduce the need to snoop around in
someone else’s home directory. After all, most of us also don’t like others
to peek and poke in our private drawers, let alone suitcases.

The frustration of having to change your command search path every
time a new (version of a) software application is installed, is causing
headaches sometimes. Or, even worse, the search path depends on the
underlying hardware architecture, e.g. Sun-3, Sun-4 and Sun386i.

All this and more is covered in this publication. Just by setting up some
conventions and guidelines about where to put what and why is 90% of
the job. And please note that setting up the system described here does
not require any additional software to be bought or installed. You can just
use the tools and technologies available at your fingertips right now.

Three main objectives that have been the most important during the
definition of the guidelines are the same as those used for the design of
the OPEN LOOK GUI: simplicity, consistency and efficiency.

Conventions and guidelines must be simple to understand and
implement. Applying those guidelines must also be very simple. So
simple, that even non-administrators have a clear picture of what is going
on. So simple, that even non-administrators can execute the steps
required to perform a certain operation with success.

Having a consistent environment for both end-users and system
administrators will alleviate their work. If the same concepts apply in all
circumstances, this will greatly enhance the overall quality and
understanding of the environment, and concepts once learned can be
applied everywhere.

Besides being simple and consistent, the system must also be efficient to
use and apply. The overall performance and usability of the system is not
allowed to suffer too much from the first two objectives. This means that
in some cases exceptions have to be applied in order to ensure better
performance.

Initially, the first two goals mentioned above are the most important and
the document will focus on those. However, research has shown that if
these rules are strictly applied, performance loss may result. In general
you could say that in order to improve performance, you should try to
minimize the number of symbolic links that you use.

File system organization

Introduction

Who should read this document

For more information on performance issues, please refer to the article
“NFS Client Server Performance” by Jos van der Meer, Frans Wessels and
Maarten Westenberg from Sun Microsystems Nederland B.V.

Who should read this document

This document is written for both novice and experienced system
administrators. It is assumed that you are familiar with UNIX and SunOS
in general, the Network File System (NFS), the Network Information
Services (NIS), tools like the Source Code Control System (SCCS) and
Revision Control System (RCS).

These tools and technologies will not be explained in this document.
For more information about SunOS, NFS and NIS, please refer to System
& Network Administration. For more information about SCCS, refer to the
corresponding manual pages (sccs(1)). RCS is free software. So if you
need more information on RCS, you must first get a copy of this software.
Ask a local friend or colleague if he or she knows were to get it.

How to use this document

Choosing a name for your

computer helps you
picking the right names

Treat System
management as a real
project

The art of automounting
explains the where,
what, why and how

This manual is divided into the following parts: Choosing a name for your
computer, System management as a real project and The art of automounting.

Choosing the right names for the things that you work with in your
environment is the first step in organizing your environment and it will
make it clear to work with. This chapter details on the do’s and don’ts
when choosing names.

Instead of directly modifying administrative files on an ad hoc basis, you
could also treat system and network administration as a real project,
including its own separate project directory. A primer on how to set it up
is provided in this chapter.

The key to success in file system organization is storing things on the
right places and making them available on the right places, which are two
different things. This chapter tells you all about that, including the
underlying motivation for doing so. This chapter details about the real
work that has to be done, up to the general commands required to
implement it.

Besides the general concepts and guidelines explained in this chapter,
it will go into some specific requirements that apply when installing or
building applications that nicely fit in the frame work. It details about
resolving architecture dependencies, different versions and variants of
the same application etc. As an example, the building and installation of
GNU Emacs is completely described.

ii

System and Network Management

1 Choosing a name for your computer

This chapter discusses guidelines regarding what to do and what not to
do when naming “things” or objects in general. These objects range from
computers to printers and perhaps even disks.

First of all, the article of Don Libes is included in this chapter. It has a
somewhat narrow focus on computer names only, but his article has a
wider scope than just computer names and can be applied to more things
than just computers.

Don Libes’ memo

This is an almost exact copy of Don Libes” RFC 1178 from the “Integrated
Systems Group/NIST”, August 1990. It has only be adapted to the layout
and style of this document and a few headers have had minor changes
applied to them.

Status of this memo

Abstract

This FYI RFC is a republication of a Communications of the ACM article
on guidelines on what to do and what not to do when naming your
computer [1]. This memo provides information for the Internet
community. It does not specify any standard.

Distribution of this memo is unlimited.

In order to easily distinguish between multiple computers, we give them
names. Experience has taught us that it is as easy to choose bad names as
it is to choose good ones. This essay presents guidelines for deciding
what makes a name good or bad.

Keywords: domain name system, naming conventions, computer
administration, computer network management

File System Organization

1-1

Choosing a name for your computer Don Libes” memo

Choosing a name

Don’t overload other

terms already in common

use

Don’t choose a name

after a project unique to

that machine

As soon as you deal with more than one computer, you need to
distinguish between them. For example, to tell your system administrator
that your computer is busted, you might say, “Hey Ken. Goon is down!”

Computers also have to be able to distinguish between themselves.
Thus, when sending mail to a colleague at another computer, you might
use the command “mail libes@goon”.

In both cases, “goon” refers to a particular computer. How the name is
actually dereferenced by a human or computer need not concern us here.
This essay is only concerned with choosing a “good” name. (It is assumed
that the reader has a basic understanding of the domain name system as
described by [2].)

By picking a “good” name for your computer, you can avoid a number
of problems that people stumble over again and again.

What not to do

Here are some guidelines on what not to do.

Using a word that has strong semantic implications in the current context
will cause confusion. This is especially true in conversation where
punctuation is not obvious and grammar is often incorrect.

For example, a distributed database had been built on top of several
computers. Each one had a different name. One machine was named
“up”, as it was the only one that accepted updates. Conversations would
sound like this: “Is up down?” and “Boot the machine up.” followed by
“Which machine?”

While it didn’t take long to catch on and get used to this zaniness, it
was annoying when occasionally your mind would stumble, and you
would have to stop and think about each word in a sentence. It is as if,
all of a sudden, English has become a foreign languagel.

A manufacturing project had named a machine “shop” since it was going
to be used to control a number of machines on a shop floor. A while later,
a new machine was acquired to help with some of the processing.
Needless to say, it couldn’t be called “shop” as well. Indeed, both
machines ended up performing more specific tasks, allowing more
precision in naming. A year later, five new machines were installed and
the original one was moved to an unrelated project. It is simply
impossible to choose generic names that remain appropriate for very
long.

Of course, they could have called the second one “shop2” and so on. But
then one is really only distinguishing machines by their number. You
might as well just call them “1”, “2”, and “3”. The only time this kind of
naming scheme is appropriate is when you have a lot of machines and
there are no reasons for any human to distinguish between them. For
example, a master computer might be controlling an array of one
hundred computers. In this case, it makes sense to refer to them with the
array indices.

While computers aren’t quite analogous to people, their names are.
Nobody expects to learn much about a person by their name. Just because
a person is named “Don” doesn’t mean he is the ruler of the world
(despite what the “Choosing a Name for your Baby” books say). In
reality, names are just arbitrary tags. You cannot tell what a person does
for a living, what their hobbies are, and so on.

1 As a matter of fact, it is for the author...

1-2

The Art of Automounting

Don Libes” memo

Choosing a name for your computer

Don’t use your own
name

Don’t use long names

Avoid alternate spellings

Avoid domain names

Avoid domain-like
names

Even if a computer is sitting on your desktop, it is a mistake to name it
after yourself. This is another case of overloading, in which statements
become ambiguous. Does “give the disk drive to don” refer to a person
or computer?

Even using your initials (or some other moniker) is unsatisfactory.
What happens if I get a different machine after a year? Someone else gets
stuck with “don” and I end up living with “jim”. The machines can be
renamed, but that is excess work and besides, a program that used a
special peripheral or database on “don” would start failing when it
wasn’t found on the “new don”.

It is especially tempting to name your first computer after yourself, but
think about it. Do you name any of your other possessions after yourself?
No. Your dog has its own name, as do your children. If you are one of
those who feel so inclined to name your car and other objects, you
certainly don’t reuse your own name. Otherwise you would have a great
deal of trouble distinguishing between them in speech.

For the same reason, it follows that naming your computer the same
thing as your car or another possession is a mistake.

This is hard to quantify, but experience has shown that names longer than
eight characters simply annoy people.

Most systems will allow prespecified abbreviations, but why not
choose a name that you don’t have to abbreviate to begin with? This
removes any chance of confusion.

Once we called a machine “czek”. In discussion, people continually
thought we were talking about a machine called “check”. Indeed, “czek”
isn’t even a word (although “Czech” is).

Purposely incorrect (but cute) spellings also tend to annoy a large
subset of people. Also, people who have learned English as a second
language often question their own knowledge upon seeing a word that
they know but spelled differently. (“I guess I've always been spelling
“funxion” incorrectly. How embarrassing!”)

By now you may be saying to yourself, “This is all very silly...people
who have to know how to spell a name will learn it and that’s that.”
While it is true that some people will learn the spelling, it will eventually
cause problems somewhere.

For example, one day a machine named “pythagoris” (sic) went awry
and began sending a tremendous number of messages to the site
administrator’s computer. The administrator, who wasn’t a very good
speller to begin with, had never seen this machine before (someone else
had set it up and named it), but he had to deal with it since it was
clogging up the network as well as bogging down his own machine
which was logging all the errors. Needless to say, he had to look it up
every time he needed to spell “pythagoris”. (He suspected there was an
abbreviation, but he would have had to log into yet another computer
(the local nameserver) to find out and the network was too jammed to
waste time doing that.)

For technical reasons, domain names should be avoided. In particular,
name resolution of non-absolute hostnames is problematic. Resolvers will
check names against domains before checking them against hostnames.
But we have seen instances of mailers that refuse to treat single token
names as domains. For example, assume that you mail to libes@rutgers
from yale.edu Depending upon the implementation, the mail may go to
rutgers.eduor rutgers.yale.edfassuming both exist).

Domain names are either organizational (eg., cia.goy) or geographical
(e.g., dallas.tx.u$. Using anything like these tends to imply some
connection. For example, the name “tahiti” sounds like it means you are
located there. This is confusing if it is really somewhere else (eg.,
“tahiti.cia.gov is located in Langley, Virginia? I thought it was the CIA’s

File System Organization

1-3

Choosing a name for your computer Don Libes” memo

Don’t use antagonistic or
otherwise embarrassing

names

Don’t use digits at the

beginning of the name

Don’t use non-

alphanumeric characters

in a name

Don’t expect case to be

preserved

Use words/names that
are rarely used

Use theme names

Tahiti office!”). If it really is located there, the name implies that it is the
only computer there. If this isn’t wrong now, it inevitably will be.

There are some organizational and geographical names that work fine.
These are exactly the ones that do not function well as domain names. For
example, amorphous names such as rivers, mythological places and other
impossibilities are very suitable. (“earth” is not yet a domain name.)

Words like “moron” or “twit” are good names if no one else is going to
see them. But if you ever give someone a demo on your machine, you
may find that they are distracted by seeing a nasty word on your screen.
(Maybe their spouse called them that this morning.) Why bother taking
the chance that they will be turned off by something completely
irrelevant to your demo.

Many programs accept a numerical internet address as well as a name.
Unfortunately, some programs do not correctly distinguish between the
two and may be fooled, for example, by a string beginning with a decimal
digit.

gNames consisting entirely of hexadecimal digits, such as “beef”, are
also problematic, since they can be interpreted entirely as hexadecimal
numbers as well as alphabetic strings.

Your own computer may handle punctuation or control characters in a
name, but most others do not. If you ever expect to connect your
computer to a heterogeneous network, you can count on a variety of
interpretations of non-alphanumeric characters in names. Network
conventions on this are surprisingly nonstandard.

Upper and lowercase characters look the same to a great deal of internet
software, often under the assumption that it is doing you a favor. It may
seem appropriate to capitalize a name the same way you might do it in
English, but convention dictates that computer names appear all
lowercase. (And it saves holding down the shift key.)

Names that work well

Now that we’ve heard what not to do, here are some suggestions on
names that work well.

While a word like “typical” or “up” (see above) isn’t computer jargon, it
is just too likely to arise in discussion and throw off one’s concentration
while determining the correct referent. Instead, use words like “lurch” or
“squire” which are unlikely to cause any confusion.

You might feel it is safe to use the name “jose” just because no one is
named that in your group, but you will have a problem if you should
happen to hire Jose. A name like “sphinx” will be less likely to conflict
with new hires.

Naming groups of machines in a common way is very popular, and
enhances communality while displaying depth of knowledge as well as
imagination. A simple example is to use colors, such as “red” and “blue”.
Personality can be injected by choices such as “aqua” and “crimson”.

Certain sets are finite, such as the seven dwarfs. When you order your
first seven computers, keep in mind that you will probably get more next
year. Colors will never run out.

Some more suggestions are: mythical places (e.g., Midgard, Styx
Paradisg, mythical people (e.g., Procne Tereus Zeug, killers (e.g., Cain,
Burr, Boleyn, babies (e.g., colt, puppy tadpole elver), collectives (e.g.,
passel plagug bevy covey, elements (e.g., helium argon, zinc), flowers (e.g.,
tulip, peony lilac, arbutug. Get the idea?

1-4

The Art of Automounting

Don Libes” memo Choosing a name for your computer

Use real words Random strings are inappropriate for the same reason that they are so
useful for passwords. They are hard to remember. Use real words.

Don’t worry about Extremely well-known hostnames such as “sri-nic” and “uunet” should
reusing someone else’s be avoided since they are understood in conversation as absolute
hostname addresses even without a domain. In all other cases, the local domain is
assumed to qualify single-part hostnames. This is similar to the way
phone numbers are qualified by an area code when dialed from another
area.
In other words, if you have chosen a reasonable name, you do not have
to worry that it has already been used in another domain. The number of
hosts in a bottom-level domain is small, so it shouldn’t be hard to pick a
name unique only to that domain.

There is always room for I don’t think any explanation is needed here. However, let me add that if
an exception you later decide to change a name (to something sensible like you should
have chosen in the first place), you are going to be amazed at the amount
of pain awaiting you. No matter how easy the manuals suggest it is to
change a name, you will find that lots of obscure software has rapidly
accumulated which refers to that computer using that now-ugly name. It
all has to be found and changed. People mailing to you from other sites
have to be told. And you will have to remember that names on old
backup media labels correspond to different names.
I could go on but it would be easier just to forget this guideline exists.

Conclusion

Most people don’t have the opportunity to name more than one or two
computers, while site administrators name large numbers of them. By
choosing a name wisely, both user and administrator will have an easier
time of remembering, discussing and typing the names of their
computers.

I have tried to formalize useful guidelines for naming computers, along
with plenty of examples to make my points obvious. Having been both a
user and site administrator, many of these anecdotes come from real
experiences which I have no desire to relive. Hopefully, you will avoid all
of the pitfalls I have discussed by choosing your computer’s name wisely.

Credits

Thanks to the following people for suggesting some of these guidelines
and participating in numerous discussions on computer naming: Ed
Barkmeyer, Peter Brown, Chuck Hedrick, Ken Manheimer, and Scott
Paisley.

This essay first appeared in the Communications of the ACM,
November, 1989, along with a Gary Larson cartoon reprinted with
permission of United Press Syndicate. The text is not subject to copyright,
since it is work of the National Institute of Standards and Technology.
However, the author, CACM, and NIST request that this credit appear
with the article whenever it is reprinted.

References

[1] Libes, D., “Choosing a Name for Your Computer”, Communications of
the ACM, Vol. 32, No. 11, Pg. 1289, November 1989.

File System Organization 1-5

Choosing a name for your computer Don Libes” memo

[2] Mockapetris, P., “Domain Names - Concepts and Facilities”, RFC 1034,
USC /Information Sciences Institute, November 1987.

Security considerations

Security issues are not discussed in this memo.

Author’s address

Don Libes Integrated Systems Group National Institute of Standards and
Technology Gaithersburg, MD 20899

Phone: (301) 975-3535
EMail: libes@cme.nist.gov

A sample configuration

During the discussion in this document, the sample environment tries to
use the same kind of names that we use in our day to day life. For
example, people are used to districts or neighborhoods that have the
names of flowers, planets and mills, say. The same can be applied to
objects in a networked computer environment. Picking the right name
classes for the right object collections can further improve the acceptance
and clarity of both the individual or local environment and the overall
network with all its resources like printers, networks, domains,
computers, terminal servers, gateways et cetera. You should pick name
classes which somehow relate to the objects that you are naming.

For instance, since more and more powerful PostScript printers appear
in computerized environments and since PostScript printers are capable
of producing “art work”, you could pick the name class of famous
painters for your printers. Printer names like van Gogh RembrandtDali
and Vermeerare good examples. For less powerful printers like simple
matrix or inkjet printers which normally only produce text, you could
choose the name class of famous writers or poets. Eg. Robbinsand
Ludlum Network name class: spider names. NIS domain names: same as
department, i.e. use@ept company topleveldomaire.g.
Martien.van.Steenbergen@Holland.Sun.COM

A small table of the entities that administrators typically manage is
included to get you started.

Entity Name class Example

computer composers beethoven, chopin, mozart, liszt, bach
printer painters rembrandt, dali, vangogh, vermeer, chagal
partition elements krypton, xenon, helium, oxygen

user self preferable the user’s first name

network spiders tarantula, birdspider

group department and project names

NIS domain department.company.topleveldomain
application application base name, e.g. frame for

FrameMaker, emacs for GNU Emacs

1-6

The Art of Automounting

2 System management as a real project

Instead of changing administrative files like /etc/hosts directly and on an
ad hoc basis, you could consider creating a real project environment for
system and network administration. This will help you organize and
structure your job and you will be able to do more in less time and
improve the overall quality of your work.

This chapter explains the system administration project directory and
the conventions that apply to it. It covers the directory structure and
organization and the use of revision control applied to the various files.

You should consider this chapter as a primer for setting up your project
environment. It is by no means meant as a complete solution.

The system administration project directory

System management and administration is considered to be a real project.
As with all projects, it has its own directory. In this directory, all data
related to system management and administration is stored. It ranges
from original copies of hosts, group and aliases to documentation, shell
scripts, backup logs and other statistical data that needs to be maintained.

The project directory is separated from the normal location of the
administrative files: /etc. Having a separate directory that holds all
administrative information has major benefits:

1. Complete separation of local data and data supplied by other paitles.
improves maintainability and makes future installations of new
versions of other party software very easy: you don’t have to find out
which files you must save before performing an upgrade; you can
more or less install the new version without thought; after the
upgrade, you only have to copy the relevant files to the correct
destinations. You could consider to apply this separation not just for
system administration, but also to application management.

2. Original files ae not stoed on a local oot file system, but in network wide
accessible mject directory This means that you will have the data
available anywhere and almost anytime without having to login to
the machine were the data is actually stored.

3. Original files ae maintained byeal users instead of the anonymouostr
Besides that, it reduces the need to have super user privileges during
the actual update. You will only require super user privileges during
the installation and effectuation of the modified files. This can
improve security. Furthermore, if revision control is applied (see
below), a complete history of events, including an audit trail, is
maintained at almost no extra cost. This improves consistency and
reliability.

It is up to you how you structure your directory. You could consider
storing information in an “object oriented” way, e.g. having separate files
Who dunnit?! or directories for the entities—hosts, printers, users, etc—that you have
to manage. The ultimate solution would be using a real database
management system to store the relevant information. The required
system files could then be generatedfrom that database.

File System Organization 2-1

System management as a real project Revision control

Revision control

Who did what, when and
why?

You could consider to put all source files, like NIS maps and other
administrative files that normally reside in the /etc directory, under
revision control. Of course there are some disadvantages to this approach.
For instance, it introduces overhead because for every modification first
the source file has to be locked, then edited and installed in the correct
place, tested, and finally checked in again. Furthermore, direct changes to
the installed files (e.g. /etc/group) must be avoided.

This requires strict discipline from the administrative staff. Despite the
disadvantages, it has some major benefits including:

1. Supporting multiple revisions of text—changes no longer destroy the
original, because the previous revisions remain accessible.

2. History log—it is easy to find out who did what and why.

3. Resolution of access conflicts—two or more administrators wanting
to change the same revision are alerted, preventing one modification
from corrupting the other.

SCCS versus RCS

Two major tools are available to support revision control: SCCS and RCS.
Both have pros and cons. Instead of going into a detailed discussion
about which one is best you could consider picking RCS for the following
reasons (the complement applies to SCCS):

1. Allows multiple comment lines on check in.
2. Retains execute permissions on files.

3. Supports symbolic names for revisions.
4

If needed, a lock can be removed by another user than the locker.
This avoid blocking work when the locker is unavailable. The
original locker is notified through mail.

The major disadvantage of using RCS in favor of SCCS is that you have
to build, install and support it yourself.

Of course you could always decide to use SCCS instead and provide
workarounds for the cons.

Revision numbering scheme

The revision numbering will use a four level scheme, RL.B.S. RL denote
the releaseand levelnumber and is kept in lock step with the release and
level number of the operating system. For instance, if you are running
SunOS 4.1 on the majority of systems, R must equal 4 and L must equal
1. Of course, this applies to all files under revision control. TheB.S
combination denotes the branchand sequencenumber of a file. All files
must use the same branch at a given time. The sequence number however
is incremented on every change made to a file. Branch numbers are
incremented whenever major changes are made to the system (in this case
“the network” is the system).

The Art of Automounting

Revision control

System management as a real project

Below, you will find a sample history log. The time stamps have been
omitted for convenience.

3511 martien initial revision
3.5.1.2 martien user john added (also sysadmin)
3.5.1.3 martien user mary added

3.5.1.4 john user jim added

3.5.1.5 john user jim removed

3.5.1.6 john user carl added

etc.

3.5.2.1 martien file system reorganization

3.5.22 john user deborah added
etc.

3.5.2.23 martien user john removed (moved to ABC Corp.)
4.0.1.1 martien conversion to SunOS 4.0
. etc.
41.1.1 martien conversion to SunOS 4.1.1
etc.

This way, it is easy to mark certain major events in time and it keeps the
revision number in sync with the operating system version.

Files under revision control must have a default branch assigned to it so
that check out/check in sequences automatically increment the file’s
sequence number (as opposed to the release and level number).

General procedures

The general procedure to modify these files is:
lock — modify — install — test — accept — unlock

All files are normally read-only. This means that they cannot be changed
without special action (although root can, but shouldn’t). In order to
modify a file, it needs to be locked first.

Whenever a file is locked, only the locker can modify it, so care must
be taken to keep the file locked for short times only. After modification,
the file is installed in its normal place so that other tools and utilities can
find it. Its new contents is tested against any requirements and finally
accepted.

Eventually, the file is unlocked (or checked in) which increments its
sequence number. During the check in, you specify the reason for change
in a short comment.

File System Organization

2-3

System management as a real project Revision control

2-4 The Art of Automounting

3 The art of automounting

Organizing your file system so that you always know what is stored
where on your disks and why, could be considered as an art. However,
once you have done that, you cannot live without it anymore.

This chapter contains the guidelines and procedures that help you set
up and structure the data that you have to maintain for your customers—
the end users (note that you yourself are also an end user).

A golden rule for successful system management is: document the
conventions that you use and the things you change anc#ésens why

The sample configuration

The sections below are based on the following configuration of computer
systems interconnected by Ethernet.

Host name: bach

Usage: Main application server

Host name: chopin
Usage: Mirror application server

Type: SPARCserver 2 / Type: SPARCserver 2
Partition: /xenon Partition: /neon
Usage: Third party and Usage: Redundant copy of
unbundled software bach:/xenon
Partition: /argon Partition: /fluor
Usage: Free and locally built Usage: Redundant copy of
software bach:/argon, beta software

Partition: /helium
Usage: Source code of free and

local

and older versions of
software for compatibility

software

Host name: mozart
Usage: Production data server

Host name: liszt
Usage: Your workstation

Type: SPARCserver 490

Type: SPARCstation 2 GX

S

LI

Partition: /krypton
Usage: Home and project
directories private data

Partition: /gold
Usage: Very old software and

The problem defined

/krypton: file system full

First of all, what are your most important problems right now.

Probably you run out of disk space somewhere in your network almost
every day. Besides that, you know that there is a lot of unused disk space
available in the network on the various drives local to workstations that
you would like to use.

You will probably also need to change the user’s command search path
once in a while, in order to make a new application available to them.
With tens or even hundreds of users and without some organization, this
might become a nightmare.

File System Organization

3-1

The art of automounting

Data classes and instances

Plug and Play

\ 4
m =
~ >~
A 2

Looking for the files you need all over the place, and not being able to
find them is a major frustration. Even worse, if you have to peek in your
colleague’s private directories—because you know that he or she stores
things there instead of a project or workgroup directory—you might feel
uncomfortable and hope that you will not be caught snooping.

Also, installing (and uninstalling and moving them around)
applications, users, systems and other entities on your network is
sometimes a hassle. You would probably like to plug and play, meaning
that you unpack your new hot box, plug it into the mains and into the
network and run! The setup should be so, that users and applications do
not suffer from the various underlying hardware platforms and operating
systems, users should be able to use them transparently.

Data classes and instances

Home directories:
/home/user

Project directories:
Iproject/project

Most of the problems are caused by the various classes, versions and
variants and locations of data. Below, you will find a few examples of
data classes and some considerations about how to use them.

To start with, home directories are a good example of a distinct data class.
Preferably, a home directory looks something like /home/mary. This is
easy to remember, refers to a real person and does not have any “foreign”
data clobbering it.

For instance, in the conventional Sun file system set up, you use home
directories of the form /home/mozart/mary where mozart is the name of
the NFS server of the home directory. However, you will have to do a lot
of work if you decide to move Mary’s home directory to another NFS
server. So why don’t you leave out this sensitive information in the first
place?

This means that in general, home directories have the form /home/user,
where user is replaced with the login name of that user.

Note that if you are planning to implement this concept, you will have
to be careful not overmounting the conventional /home directory, which
is normally used as mount point for the home partition, e.g. sd0Oh.

Another specific data class could be the various projects that are being
done in your environment. You should apply the term “project” for a
wide scope of activities, not just software engineering projects.

For example, a project that studies NFS performance could be called
nfstune. Another project that deals with personnel administration could
be called humadm. Yet another project is responsible for system
administration (yes, that’s you), let’s call it sysadm.

Having these examples, it would be no more than logical (and
intuitive) to use separate project directories for them, and their

3-2

The Art of Automounting

Data classes and instances The art of automounting

corresponding names then would be /project/nfstune, /project/humadm
and /project/sysadm.
In general you will have /project/project.

Applications, tools As a third example, consider the various applications, tools and utilities
utilities and other read- that you make available for your users. In general, these “things” are
mostly data: /vol/volume used in a read-only fashion. For example, you could support tools like

FrameMaker, GNU Emacs, Console Tool, Rolo Tool and Catcher! on your
network. Also, you want these tools to be available for everyone on the
network.

These applications are normally made available through a path name
that contains the application’s base name as last part. FrameMaker is then
called frame, GNU Emacs is called emacs, and the others contool,
rolotool and catcher respectively.

Following the trend set in the first two examples, you could consider
providing these applications through, say, /applic, /tool and /util.
However, most of these applications are used in more or less the same
way and perhaps even some other data (i.e. non-applications, like include
files, icons, FrameMaker document templates) are used in the same way.
So why not just keep it simple and make them available as volumes
through /vol: a clod of data that can be treated as one single unit

To complete our example, you would have directories like /vd/frame,
/vol/lemacs, /vol/contool, /vol/rolotool and /vol/catcher respectively.

In general you would have /vol/volume.

A major advantage of the single unit approach is that you can move these
units around on the network to the most convenient location very easily,
while still maintaining the same logical access path. (If you are
wondering how? Read on.) Besides that, treating applications and the like
as units, means that they do not “infect” your file system on other places
than just the installation directory. This means that uninstallation
becomes a piece of cake: just remove the installation directory and any
references to it. You don’t have to track down any other places in your
file system that may have been touched during the initial installation of
the application.

Software distributions: Suppose your business includes distributing software. For instance, you
/distrib/distribution ~ deal in FrameMaker, you have your own developed software that you

want to cut tapes from, you support a few distributions for friends, etc.
Consider making these things available through /distrib/distribution. For
instance /distrib/frame (note the difference between this version and
[vol/frame), /distrib/nfstune (the product that results from the
corresponding project discussed above), /distrib/xview (the XView source
code that you want to be able to give your friends).

Again, these distributions are used in a read-only fashion and they can
be treated as units. You could develop scripts that follow this convention
in order to create tapes or floppies ready for distribution. You could also
consider putting less frequently used distributions on partitions that are
normally not used to store production data. For instance, you could use
the partitions local to workstations and that are normally not used for
other purposes.

And more: /source, Using the same concept, you could go on. Supporting /source for
/beta... building and installing public domain and free software, beta if you
want to distinguish between general (or “production”) applications and
beta releases of software that you want to make available.

In general: /class/instance In general, you will have /class/instance as a path name to get to a specific
instance of data in your network. Note that it is only two levels deep!

1 Catcher is a nice utility developed by Chuck Musciano that supports the drag and drop of files on custom applications and
shell scripts.

File System Organization 3-3

The art of automounting

Data classes and instances

This is easy to remember, especially if you use the right names and set it
up consistently.

You can promote data at the instance level to class level if the need is
there. For example, you start out with supporting /vol/distrib for
software distributions. But after a while, this directory becomes so large
and unmanageable that you decide to split it up into separate
distributions. This is the moment that you promote /vol/distrib to
/distrib. Of course, the other way around is also possible.

Versions and variants

Other major problems are the various versions and variants of
applications.

For example, at a certain point in time you must support FrameMaker
1.3b SunView (because there are still users that did not have the upgrade
training to 2.0), FrameMaker 2.1 SunView (because there are still users
who are not running OpenWindows) and FrameMaker 2.1 for the X
Windows System, the default.

At the same time, OpenWindows 2.0 is the default windowing
environment and OpenWindows 3.0 beta is available for those who
cannot wait.

Besides that, you need to support a few free software tools—like GNU
Emacs—on multiple architectures, Sun-4, Sun-3 and Sun386i, say.

All of these instances are variations of a functional equal application.
How do you organize these things? A very simple approach would be to
always let /classlinstance be the default or current version of a data
instance. For example, /vol/frame corresponds with the FrameMaker 2.1
X Window System version, /vol/openwin corresponds with
OpenWindows version 2.0 and /distrib/xview corresponds with the
XView 2.0 source code contribution of Sun to the MIT X Windows System
distribution.

Now, if you also want to make non-default versions available and still
be able to distinguish between them, add the version number to the
default name, separated by a hyphen. So, FrameMaker 1.3b (the SunView
version) would then be available via /vol/frame-1.3b and /vol/openwin-
3.0-beta is the beta release of OpenWindows version 3.0.

The hyphen that separates the base name from the version number
helps you distinguish between the two, e.g. consider using Lotus 1-2-3
version 1.0: /vol/lotus1231.0 versus /vol/lotus123-1.0'.

In order to maintain consistency, you should also support explicit
version numbering for the default version. This means that in the
example above, you would have both /vol/frame and /vol/frame-2.1
available (which of course both refer to the same installation).

Putting it all together

The conventions described in the previous section can be realized by
using techniques and tools available in SunOS, NFS and NIS% To be
specific, it requires both servers and clients to be able to use NFS and NIS
and the program that glues them together and exploits their capabilities:
automount(8)3. The automount process, once started from /etc/rc.local

1 You will have a slight problem if you decide to use the base name lotus-1-2-3, this leads to the name /vol/lotus-1-2-3-1.0.
2 Of course you can implement these concepts in other similar environments as well, provided you have the appropriate tools

and technologies at hand.

3 If you do not have the automounter available, you could consider using amd. This is available as free software and has the
same functionality as the automounter.

3-4

The Art of Automounting

How to set up your system The art of automounting

during boot time, acts like a name to location server. Its behavior can be
almost completely controlled by the contents of some specific NIS maps.
The next section, “How to set up your system” shows you the details on
how to do this.

How to set up your system

This section gives you a look under the hood. It details on how to
partition your disk, exporting and importing! data and how to glue it all
together using the automounter, NFS and NIS.

This section applies to the general case and does not describe on how
to organize your own applications or public domain or free software. For
more information on the latter topic, please refer to “Application
management” on page 3-10.

Partitioning disks

When partitioning your disks, you should consider wether or not the
data that you are going to store in that partition is going to be used in a
read-write or read-only fashion. If it is going to be used as read-only in
most of the cases, then you will never have to include that partition in
you backup scheme. You only need to archive the data once, so that you
can recover from loss of data.

Note that installed third party applications and public domain and free
software, as well as software distributions, local include files, etc., are
used read-only most of the time. Besides that, these installations can total
up to tens, even hundreds of megabytes. Megabytes that you do not have
to backup! You only have to backup “production” data like home and
project directories and perhaps databases.

Another point of consideration is separating your data from third party
data. Third party data is data that you get from some other party, for
example a new version of the operating system, or a new version of your
publishing software, but also a new version of a locally built tool. After
having installed third party software, you often have to customize it in
order to match your local needs. If you need to customize it, try to avoid
changing files in the installation directory, or keep the required changes
to a minimum. Every time that you re-install the software you have to re-
apply the changes. Instead, try storing those changes in a directory
separate from the installation directory and tell the third party software
to look there for specific files, e.g. by setting the appropriate environment
variables or by creating the appropriate symbolic links in the installation
directory.

As an example, consider the customization of FrameMaker with respect
to the use of locally developed document templates. FrameMaker
normally looks for document templates in its own installation directory.
If you replace the directory that FrameMaker looks in by a symbolic link
to a place that youmaintain, FrameMaker will use the contents of that
location instead. In order to be compatible with the document templates
that FrameMaker supplies, you could create a symbolic link back to the,
now renamed, original template directory. Although you create two extra

1 Note that in this document the term importis used in favor of the term mountin order the emphasize the function rather than
the operation.

File System Organization 3-5

The art of automounting

How to set up your system

symbolic links, you have the advantage that the next time you install
FrameMaker, you only have to create one symbolic link, and everything
works as before. You don’t have to worry about saving your templates
before removing the old installation of FrameMaker.

Mounting local file systems

After having partitioned your disks and having created file systems in the
appropriate partitions, you have to mount them at boot time to make
them available to you local system. This is done by means of the file
/etc/fstab.

By convention, the mount points that are used in this document use
element names from the periodic table, like “krypton”, “xenon” and
“helium”. The advantage of choosing real names that are unique within
your domain or network is that you can uniquely identify a partition (or
file system) in the network. There is never any doubt about which
partition you mean when you talk about the fact that, say, /krypton is full
again. The use of the name class of elements from the periodic system
should provide for enough distinct names in your network, it contains
well over 100 element names.

The generic name /element always denotes one single physical file
system. Mapping this physical name to a more logical name is done
during the export and import of (parts of) the file system by the
automounter.

Subdividing partitions

Within the local file systems, you can create the subdirectories for the
data classes that you want to store on these partitions. For example, if
you want to support your applications and other read-only data on
/xenon, then you should create the directory /xenon/vol. And if you want
to support home and project directories on a partition called /krypton,
then you should create the directories /krypton/home and
[krypton/project.

Exporting data

If you have created directories and installed software, users and projects,
and you want to make this data available to the network, you have to
export them. If you do not export this data, others cannot import it.

Exporting data can be done at three levels: at the partition level, at the
class level and at the instance level. For example, you could export the
complete /gold partition. You could also export home directories at the
class level by exporting /krypton/home, for example. Finally, you could
export volumes (applications, etc.) at the instance level:
/xenon/vol/openwin-2.0.

The level at which you export data depends on the granularity of
control you want to have on your data. The lower the level, the more
control you have. For instance, if you export volumes at the instance
level, then you can specify the export options on the finest level. In this
case you can specify for each instance if it is exported read-only, read-
mostly, with root access, which clients can access it, and so forth. Root file
systems and swap files for diskless clients, for instance, are exported at
the finest level. You could also use it in combination with netgroup(5) in
order to allow or disallow certain groups of machines or users access to
specific data.

The Art of Automounting

How to set up your system

The art of automounting

Importing data

Simplicity &
Consistency

If you are a client of data provided by file servers on the network, you
should follow the conventions defined in the previous sections. This
means that if, for example, you need FrameMaker to be available on your
system, you have to import that volume from the server. This importing
is done by issuing the mount(8) command or by specifying the
appropriate entries in /etc/fstab. A sample command to import
FrameMaker would look like:

mount bach:/xenon/vol/frame-2.1 /vol/frame

assumed that FrameMaker is installed on the NFS server bach on a
partition that is mounted on /xenon and that the local directory
Ivol/frame exists'. In general you would use:

mount server:/ partition/class/instance/ class/instance

Instead of doing these mounts manually or during boot time, you can
exploit the automounter’s capabilities to automate this process. How to
do this is covered in the following sections.

Please note that NFS servers can be NFS clients at the same time, even of
them selves. In order to maintain consistency and simplicity, you should
set up your system so, that NFS servers are treated the same way NFS
clients are. There should be no difference except for the fact that servers
serve files.

Using the automounter

Instead of importing or mounting NFS directory hierarchies manually or
during boot time, you can use the automounter to automate this process.
For a description of how the automounter works, please refer to the
manual page: automount(8). For an in-depth discussion of the
automounter, you should refer to chapter 15, Using the NFS automounter
from System & Network Administration

By default, the automounter looks for a map with the name
auto.master in the current NIS domain. If this map exists, it will consult
this map and use this map as a list of initial automount maps (consider it
a meta map). The layout of the auto.master map is as follows:

/ mount poi nt mapnane [nount options]

By convention, all the maps that are specific for the automounter have
auto. as a common prefix.

For instance, to follow the examples used in the previous section, our
auto.master could look like this:

Ivol auto.vol -ro,nosuid,hard,intr
/project auto.project -rw,nosuid,hard,intr
/home auto.home -rw,nosuid,hard,intr
[distrib auto.distrib -ro,nosuid,hard,intr
/net -hosts -ro,nosuid,hard,intr
/- auto.direct -ro,nosuid,hard,intr

As you will notice, most of the imports are done read-only and without
set UID on execution by default. Importing data read-only is cheaper
than importing it read-write, and importing data without the set UID on

1 To take it one step further, you could even create an alias in the hosts map that aliases a hostname to a partition. In this case
you would map the host alias xenon to bach and the appropriate mount command would then be mount
xenon:/xenon/vol/frame-2.1 /vol/frame.

File System Organization

3-7

The art of automounting

How to set up your system

execution semantics avoids one of the security violations that Trojan
horse attacks like to use.

As we will see in later examples, you can override this default on
special cases in the appropriate maps.

All of the maps used in the above example will be explained below.

To start with, the contents of the auto.vol map could look like this:

emacs bach:/argon/vol/emacs-18.55\
chopin:/neon/vol/emacs-18.55
frame bach:/xenon/vol/frame-2.1\
chopin:/neon/vol/frame-2.1
bin bach:/argon/vol/${ARCH}/bin\
chopin:/neon/vol/${ARCH}/bin
man -rw,nosuid,hard,intr\

bach:/argon/vol/man\
chopin:/neon/vol/man
openwin -ro,suid,hard,intr\
bach:/xenon/vol/openwin-2.0\
chopin:/neon/vol/openwin-2.0

emacs-18.55 bach:/argon/vol/emacs-18.55\
chopin:/neon/vol/emacs-18.55

frame-2.1 bach:/xenon/vol/frame-2.1\
chopin:/neon/vol/frame-2.1

frame-1.3b chopin:/f luor/vol/frame-1.3b

openwin-2.0 -ro,suid,hard,intr\
bach:/xenon/vol/openwin-2.0\
chopin:/neon/vol/openwin-2.0
openwin-3.0-beta -ro,suid,hard,intr\
chopin:/f luor/vol/openwin-3.0-beta

Taking the first entry, emacs, as an example, here is how the automounter
works. The automounter acts like a NFS file server. In this example, it
intercepts any reference to /vol. As soon as a process refers to something
(emacs) under this directory, the automounter searches the corresponding
map, auto.vol in this case. When found, it will import the directory
hierarchy from the location(s) specified in the last column. What it will do
exactly in this example is shown in the following commands (assuming
the reply to the import request is received from bach first):

mount -o ro,nosuid,hard,intr\
bach:/argon/vol/emacs-18.55 /tmp_mnt/vol/emacs
In -s /tmp_mnt/vollemacs Ivollemacs

The bin entry will be explained in the section “Application management”
on page 3-10. Note that the man entry will be mounted read-write in
order to be able to store formatted pages in the corresponding cat
directories if necessary. Also note that openwin is mounted with the set
UID on execution option turned on in order to support the “MIT-MAGIC-
COOKIE” security.

The map used in this example also provides redundant locations for
most of the volumes. In this case, they can both be imported from either
bach or chopin. This redundancy can lead to a more reliable and robust
environment. This kind of redundancy is of course only useful for read-
mostly data.

Finally, note that besides the default version, also the explicit versions
are provided for those who need them.

The exceptions to the rules set in the auto.master map stand out against
the other entries. This gives you an instant overview of those parts that
may require special considerations during the installation phase.

3-8

The Art of Automounting

How to set up your system

The art of automounting

The auto.project map looks like:

nfstune mozart:/krypton/project/nfstune
humadm mozart:/krypton/project/humadm
sysadm mozart:/krypton/project/sysadm

Nothing special about this one, except that all projects appear to be
served by host mozart.

The auto.home map looks like:

john mozart:/krypton/home/john
mary mozart:/krypton/home/mary
graig mozart:/krypton/home/graig

Also quite simple. When John logs in, /krypton/home/john will be
imported from mozart.

The auto.distrib map looks like this:

Xxview bach:/xenon/distrib/xview-2.0
emacs bach:/argon/distrib/emacs-18.55
xview-1.0 liszt:/gold/distrib/xview-1.0
xview-2.0 bach:/helium/distrib/xview-2.0

In this case, the XView version 1.0 distribution is also supported.
However, it could be that this instance is stored on a file server that is
normally not used for intensive file server operations. Perhaps it is stored
on a disk local to a workstation somewhere in the network, just for
convenience and without the need to make backups at the appropriate
times (in this case liszt, your workstation).

The entry that specifies /net -hosts is special. It causes a reference to
/net/host to mount all directory hierarchies exported by that host. Please
note this can lead to a high system and network load and can take a long
time if the host specified exports many directory hierarchies.

The automounter consults the NIS map hosts.byname for the host
specified on the command line.

Finally, the auto.direct map is used to make single directories available in
between existing ones. As an example, consider a direct mount of
/var/spool/mail and /var/spool/calendar from a central file server that
serves your mailbox and network agenda. The entries in the auto.direct
map would look like this:

Ivar/spool/mail mailhost:/var/spool/mail
Ivar/spool/calendar calendarhost:/var/spool/calendar

References to either directory by Mail Tool and Calendar Manager
respectively, would cause the appropriate directory to be imported from
the server.

As another example, consider a transition phase: your are in the
process of switching from the old file system organization to the new one.
In the old case, you supported a project that had its directory under
lusr3/zis. In the new set up you are going to make this project directory
available under /project/zis. What you can do is support both access
paths during the transition phase so that the engineers can adapt their
scripts and Makefiles to the new set up.

In order to do so, include the following line in auto.project:

zis mozart:/krypton/project/zis

and include the following line in auto.direct:

lusr3/zis mozart:/krypton/project/zis

File System Organization

3-9

The art of automounting Application management

As you can see, both locations refer to the same project directory.

Another conveniency of the automounter is that it will create all
directories needed for you. It will also remove them (and the
corresponding links) automagically after a certain period of inactivity or
when the system is shut down. You do not have to do a thing.

Automount inconveniences

There are a few inconveniences when using the automounter that must be
mentioned.

First of all, the automounter mounts all directory hierarchies under
/tmp_mnt, and creates a symbolic link to that location. This means to you
will often see paths that start with the unaesthetic /tmp_mnt. Try the
command pwd(1) for example.

Second, the locations that the automounter watches are initially empty.
Only on reference, entries are created. This means that if you type, say,

Is /vol
you will not see anything the first time. As another result, file name
completion supported by some utilities (C and Korn shell and Emacs for

example) does not work in these directories initially. You must explicitly
type in the full name that you need.

Last, since the logical location contains nothing but symbolic links to the
actual mount point, commands like

cd /home/mary/../[john

are likely to fail. Remedy: always use full path names in this case.

Application management

If you need to support software for more than one hardware platform—
which is normally the case in a heterogeneous environment—a well
designed directory structure is what you need.

This section discusses a model that allows you to do so.

First of all, remember that applications are made available as volumes in
the network. The first part of this section describes how to organize such
a volume.

The second part of this section describes a way to make the commands
available to end users in such a way that the end user does not have to
be bothered with the underlying hardware and operating system
platform. It is completely transparent to him or her. Furthermore, the
second part will discuss a concept that avoids the need to change the
shell’s search path for every command that you want to make available.

Application directory organization

This section describes the preferred directory structure for applications.
In general, applications normally have architecture dependent and
shareable, architecture independent, data. Furthermore, it is considered

3-10 The Art of Automounting

Application management

The art of automounting

good behavior if the application does not require to be able to write in its
own installation directory during normal operation.

The directory structure described below results in a complete
separation between shareable and architecture dependent data. The
directory structure is as follows:

bin.arch Architecture dependent directory containing executable
end-user programs for that architecture. Contains
symbolic links to end-user commands stored in ../script.
Real copies create unnecessary redundancy and should
probably be avoided for the sake of consistency.

script! Directory containing scripts (shell, awk and others) that
can be shared across architectures. These scripts are also
part of the end-user commands.

etc.arch Architecture dependent directory containing executable
programs for that architecture. These programs are
normally not used by end-users directly, but rather by
the application itself or by an application administrator.

lib.arch Architecture dependent libraries and other resource files
that could be used by the application itself or perhaps
by software developers.

Besides these general directories, you could of course support directories
for help texts, fonts, lisp sources, etc. For more information, please refer
to “A complete example: GNU Emacs” on page 3-18.

Having this application directory structure, it can be made available as a
volume. GNU Emacs for example, would become available as /vol/emacs
and it would support the directories /vol/emacs/bin.sun4
/vol/lemacs/etc.sun4, /vol/emacs/info and /vol/emacs/lisp, say.

If the application itself needs to access its own files during operation, it
must be built so that it refers to its installation directory, and not to some
other place in the file system. For instance, GNU Emacs refers to its own
Lisp files during execution, and it should use the path /vol/emacs/lisp to
access them. Not something like /usr/local/emacs/lisp.

Making the application’s commands available

In general, applications, tools and utilities exist of one or more end user
commands. These commands can be typed at the shell prompt, and the
shell will try to execute that command. The shell searches for commands
in the directories specified in the PATH environment variable?.

This means that one way to tell the shell that you have added a set of
new commands is to add an entry to its search path. For example, if you
have added GNU Emacs as a volume, you could make the commands
available by executing the following commands:

PATH="${PATH}:/vol/lemacs/bin.‘arch”
export PATH

However, this has major disadvantages.

First of all, you need to do this for all the users and all the shells
(Bourne, C and Korn) that want to have the Emacs commands available.
This can be quite a hassle and is hard to maintain.

1 Note that the name of this directory is in singular form, script versus scripts. After all, you also don’t use directory names

like /usr/bins or /homes.

2 In the examples mentioned, only Bourne shell (sh(1)) syntax is used. For information on the C and Korn shell, please refer
to the corresponding manual pages.

File System Organization

3-11

The art of automounting

Application management

The shell’s search path.

Second, the search path gets larger and larger on every such occasion,
finally resulting in a twisty little maze containing dead ends as well.

And last but not least, the search path contains architecture dependent
parts. This is no real problem, but it is somewhat unaesthetic and it can
be avoided as you will see below.

In order to solve the problems mentioned above, you can create a
“convenience” bin directory that only contains symbolic links to the
actual commands. To resolve the architecture dependency, you can create
such a directory for every architecture that you need to support!. This
directory is also made available as a volume and users only need to
incorporate this directory in their search paths.

Suppose you want to support the emacs command. Then, what you
should have is the following symbolic link:

/vol/bin/emacs — /vol/emacs/bin. ar ch/emacs

Here, arch should be replaced with sun3, sun4 or sun386, whichever is
appropriate. The shell’s search path must of course include /vol/bin in
order for the shell to find the command.

Note that both /vol/bin and /vol/emacs are made available through the
automounter.

The specific steps required to create this behavior in this example are
described below. But please note that more general procedures are
described in “General procedures” on page 3-14.

For example, suppose you want to add the Emacs commands for Sun-3,
Sun-4 and Sun386i architectures to the environment.

First, you have to build GNU Emacs and it should have the directory
structure described in the previous section. You make this instance of
Emacs available as a volume on a file server:

mkdir -p /partition/vol/emacs-18.55

Then export this volume by adding the appropriate line to /etc/exports
and running exportfs(1). Finally, add the following lines to the auto.vol
map and propagate the changes on the network:

emacs server:/ partiti on/vollemacs-18.55
emacs-18.55 server:/ partiti on/vollemacs-18.55

Conclude this step with installing the previously built Emacs in this
directory on the file server.

Next, what you do is create a volume for the architecture dependent bin
directory on a file server if it does not already exist:

mkdir -p /partition/vol/l arch/bin

Note that the architecture dependencies are reversed, or turned inside
out, in this occasion. That is, the arch directory is located one directory
lever higher than the bin directory. This concentrates all architecture
dependent parts under one single exported directory. If you need to, you
can import this single directory later on /ust/local. If you also support lib
and etc directories, /ust/local becomes what you were used to until now.
As w1th the Emacs volume, export it and make it available to file

clients? by modifying and propagating the auto.vol map. The trick to

1 It could also be done by “auto-overmounting”. However, this technique is more expensive than the one described here and

is therefor not discussed.

2 Note that this document prefers to use the term file clientto be consistent with the term file server

3-12

The Art of Automounting

Application management

The art of automounting

resolve architecture dependencies is in this map! You should add the
following entry:

bin server:/ partition/vol/${ARCH}/bin

The variable ARCH is set by the automount process at start up (so,
during boot time). It’s value reflects the application architecture. For
example, for a Sun-3 it will equal sun3 and for a Sun-4 it will equal sun4.

This means that the directory imported depends on the architecture of
the file client.

Finally, create the appropriate symbolic links in the bin directories:

cd / partition/vol/l arch/bin
In -s /vol/lemacs/bin. arch/* .

Repeat these command for all the architectures that you support and
you're done!

Please note the final dot at the end of the second command. It is
essential that you specify it in order to create all the appropriate symbolic
links in one step.

What happens when you invoke a command?

Suppose you invoke the command:

emacs

The following things will happen. The shell searches through its path and
will find /vol/bin/emacs. Since /vol/bin is handled by the automounter, it
will be imported from the appropriate file server on first reference.
Remember that /vol/bin is architecture dependent. That is, it will come
from the location server:/partition/vollarch/bin.

Because /vol/bin/emacs is a symbolic link to
/vol/emacs/bin.arch/emacs, /vol/emacs will also be imported by the
automounter and the shell will finally execute the correct architecture
dependent command.

The Emacs process itself will reference its private files also through
/vol/emacs.

Volumes for other purposes

Besides using volumes for applications, you can also use them for other
things like an architecture dependent bin directory (as described in the
previous section), a network wide tmp directory, network wide user
initialization and prototype files, include files, manual pages, etc.

This section discusses some of these topics.

A network wide tmp directory

It is very convenient to have a network wide tmp directory available. It
provides an easy way to transfer files between colleagues without having
to use each other’s home directories. Name this directory /vol/tmp and
set the access permission to rwxrwsrwt. The physical location of this
directory could be anywhere on the network and you never have to back
it up. Consider putting it somewhere in a partition also containing swap
files for diskless clients.

Make sure you remove stale files once in a while to avoid filling up the
file system.

File System Organization

3-13

The art of automounting

General procedures

User initialization and prototype files

Consider supporting a directory /vol/default with the subdirectories init
and proto. You could put .login, .cshrc, .profile, .openwin-menu and a
bunch of other files in the init directory that users source during their
login sequence. You could install prototypes of these files in the proto
directory that are used for new accounts added to your system. Et cetera.

Network wide shell scripts

Consider supporting /vol/script for network wide shell, awk, sed, perl
and other scrips.

Local manual pages

Consider supporting /vol/man with the same structure as /usr/share/man
(or /ust/man). Create symbolic links to the appropriate places from other
volumes that you support, e.g.

cd / partition/vol/man/manl

In -s /vol/emacs/manl/* .
To let the man(1l) command find these manual pages, set your manual
search path accordingly:

MANPATH="/vol/man:/usr/share/man”
export MANPATH

Include files, icons and others

Make your favorite local include files and icons available in /vol/include
and /vol/icon respectively. Create support for /vol/frame (FrameMaker),
/vol/fmtemplates (your local FrameMaker document templates), /vol/wp
(WordPerfect), /vol/guide (Devguide), et cetera!

It’s up to you. Feel free to exploit /vol! Use your imagination.

General procedures

This section describes the generic steps that are required to create an
environment defined in the preceding sections. The steps described here
can be implemented immediately. Even an ignorant user with the
appropriate privileges can execute the procedures described here with
success.

Root privileges that are required during certain operations are explicitly
marked with a square root symbol (V). All other operations normally do
not require root privileges, depending on the access permissions and the
owner of the files and directories that have to be modified.

In order to get root privileges, invoke the su(1) command as follows:

lusr/bin/su -

The “-” option performs a complete login. It removes all variables from
the environment except for TERM, sets USER to user name, sets HOME

3-14

The Art of Automounting

General procedures

The art of automounting

and SHELL as specified in the password file, sets PATH to
:/usr/ucb:/bin:/ust/bin, changes directory to root’s home directory, and
tells the shell to read root’s .login or .profile file. This will be more secure
and avoids Trojan horse attacks, provided that you have set up root’s
environment accordingly.

Recall that some examples of data are applications, home directories of
end-users, production data like documentation, source code etc. A class
instance of a home directory could be john. A class instance of an
application could be frame. Classes are made available through the
directory /class. A class instance can then be accessed through
[classlinstance.

For example, the class of home directories could be made available
through /home and John’s home directory would be /home/john. A
general home directory would be /home/user. As another example,
applications could be made available as so called volumes through
Ivollapplic. E.g. FrameMaker would then be /vol/frame.

Adding a data class

In order to add a class, you will have to add an entry to the NIS
auto.master map that describes the class.

1 Add an entry for the data class
Add the following line to the file auto.master:
/cl ass auto. cl ass [-mount options]
2 Propagate the changed map

In order for NIS clients to recognize the new class, you have to
propagate the changes. In order to do so, you have to convert it into
dbm(5) format by using makedbm(8). This can be done as follows:

lusr/etclyp/makedbm auto.master\
Ivarlyp/ domai n/auto.master

If you have configured slave NIS servers, then you also need to push
the changed map to them!:

lusrletclyplyppush auto.master

However, normally these steps are included in a Makefile so that
running make(1) in the directory containing the source of the maps
will perform all necessary steps required to propagate the changes on
the network.

Adding a data class instance

This section describes the general procedure that adds data instances, e.g.
a user’s home directory or an application’s installation directory.

1 Note that the NIS master server does not actually pushthe map to the slave server. In fact, the master server sends a
multicast message to the slave servers that tells them to issue a subsequent ypxfr(8) command that fetchesa copy of the map.

File System Organization

3-15

The art of automounting General procedures

Create the required physical directories on the file server

1 Login on the file server

In order to be able to create the directory with the appropriate
properties, you must be logged in on the appropriate file server.

The subsequent steps will refer to server in order to denote this
NES file server.

2 Create the physical directory for the class if it does not exist

Create the directory that will be used to store all the instances for this
class (remember that /partition below is the mount point of a disk
partition containing a 4.2 file system. Partition should be replaced
with an element name from the periodic system).

Make sure that you give it the appropriate properties like owner
and group of the directory and access permissions. Refer to the
specific class descriptions for details on these properties. The
commands below are only an example and will leave the directory
accessible for everyone, but only writable for the owner and the
group of the directory.

Perform the following commands in order to create the class’
directory if it does not already exist:

mkdir -p /partition/class
chown cl ass-user.class-group /partition/class
chmod ug=rwx,0=rx /partition/class

You have to repeat this step once for each partition that is going to
support data instances of this class.

3 Create the physical directory for the class instance

Next, create the directory for the class instance. As with the class’
directory, make sure all properties are conform the conventions that
you have set up.

Perform the following commands in order to create the instance’s
directory:

mkdir -p /partition/class/instance

chown i nstance-user.instance-group\
/partition/class/instance

chmod ug=rwx,0=rx /partition/class/instance

This completes the steps required to create a directory for the instance.
All data must be stored in this physical directory.

Export the directory

In order to make the directory available to file clients, you must first
export it. This is done by adding an entry to /etc/exports and
exporting the directory.

Vv 1 Add the directory to /etc/exports

In order to be able to actually export the directory, you must add it
to the file /etc/exports. You can do this by adding the following line
to that file:

/partition/class/instance [-export options]

You could keep the entries sorted in this file for convenience.
Furthermore, you can specify a number of export access options on
the same line, like root access, read-only access, netgroup access etc.
For more information on these options refer to exports(5).

3-16 The Art of Automounting

General procedures

The art of automounting

Summary:

You could consider storing the original version of /etc/exports on
another partition than the root partition. If you maintain it there, you
can simply copy the modified version to /etc.

Export the directory by executing the following command:
exportfs -v / partition/class/instance
The “-v” option makes the command verbose, so you can actually see

the export take place.

At this point in time, file clients can actually mount the directory
hierarchy from the file server.

Change the NIS map auto.class

In order to make the directory available through /class/instance, you
will have to change the appropriate NIS map in order for the
automounter to recognize the new instance. Remember that changing
NIS maps can only be done on the NIS master server.

Login on the NIS master server
2 Add an entry for the class instance
Add the following line to the NIS map auto.class:

i nstance [/ nountpoint] [-nmount options]\
server:/ partition/class/instance

The optional mountpoint is taken as a path name relative to the
destination of the instance. If the mountpoint is omitted, a
mountpoint of / is implied.

You can also specify mount options that take precedence over the
default mount options specified in the auto.master map. This way
you create exceptions to the default mount options specified in the
master map.

3 Propagate the changed map

The commands for this step are equal to those described in step 2 in
“Propagate the changed map” on page 3-15. Please refer to that
description.
This completes the steps required to add a data instance to the network.
The instance is now available on all file clients in the current NIS domain

through /class/instance.

it is easy

Looking back at the previous sections that describe the procedures
needed to install new data classes and their instances, it appears that it
really is simple to implement and maintain. It only requires a handful of
steps to do so. From these steps, only three of them essentially require
super user privileges.

Given this framework, you should be able to define the steps required
to move data instances to another partition or server or to remove a data
instance from the network. Good luck!

File System Organization

3-17

The art of automounting

A complete example: GNU Emacs

A complete example: GNU Emacs

This section contains an overview of the steps required to build and
install GNU Emacs according to the rules laid out in the previous
sections.

The description is kept terse so you can concentrate on the commands.
It uses the following environment: the NIS domain is
amersfoort.Holland.Sun.COM. The main file server that is used for
applications is a Sun-4 machine called bach. The partition that is used to
store sources of free software is mounted on /helium. The partition that
is used to store locally developed, built and maintained applications,
tools and utilities is mounted on /argon. Furthermore, mozart is the
master NIS server and there are no NIS slave servers. mozart is also used
as the file server for home and project directories. Your own
SPARCstation 2 is called liszt. This is the first time that you do this, so
you really start from scratch.

The example below combines multiple steps into one, as opposed to
doing it phase by phase as described in “General procedures” on page 3-
14. The steps are only executed for the main application server (mozart).
In order to mirror the changes on chopin, you should make duplicates of
the directory hierarchies created in these steps. This simplification is done
for convenience, clarity and efficiency.

It assumes that you want to be able to create source distributions for
other friends using /vol/distrib, that you will compile and build it in
/source/emacs, that you will support the manual pages in /vol/man and
that the Emacs command suite will be made available through /vol/bin

Set up the directory structure and export it accordingly

1 Login on the bach (the file server for applications)

2 Create the necessary physical directories to build, install and use
Emacs

mkdir -p /argon/distrib/emacs-18.55\
/helium/source/emacs-18.55\
/argon/vol/emacs-18.55\
/argon/vol/sun4/bin\
/argon/vol/man\
/argon/vol/man/mani\
/argon/vol/man/man3\
/argon/vol/man/man4\
/argon/vol/man/man5\
/argon/vol/man/man6\
/argon/vol/man/man7\
/argon/vol/man/man8\
/argon/vol/man/cat1\
/argon/vol/man/cat3\
largon/vol/man/cat4\
/argon/vol/man/cat5\
/argon/vol/man/cat6\
largon/vol/man/cat7\
/argon/vol/man/cat8

chmod a=rwx /argon/vol/man/cat[13-8]

3-18

The Art of Automounting

A complete example: GNU Emacs The art of automounting

3 Create the appropriate lines in /etc/exports
Add the following lines to /etc/exports:

/argon/distrib/emacs-18.55
/helium/source/emacs-18.55
/argon/vol/emacs-18.55
/argon/vol/man
/argon/vol/sun4/bin

4 Export the directory hierarchies

lusr/etc/exportfs -va

Read the Emacs distribution tape

Still on bach, read in the tape with the Emacs distribution you got from
your friend.

1 Read in the tape

cd /argon/distrib/emacs-18.55
tar xvf /dev/rst0

This results in a file called emacs-18.55.tar.Z. This file will later be
available anywhere in your domain through /distrib/emacs/emacs-
18.55.tar.Z as well as through /distrib/emacs-18-55/emacs-18.55.tar.Z.

Configure the automounter

1 Login on the NIS master server (mozart)
2 Create the auto.master file

Create the file /etc/auto.master with the following contents:

[distrib auto.distrib -ro,nosuid,hard,intr
/source auto.source -rw,nosuid,hard,intr
Ivol auto.vol -ro,nosuid,hard,intr

3 Create the auto.distrib file
Create the file /etc/auto.distrib with the following contents:

emacs-18.55 bach:/argon/distrib/emacs-18.55
emacs bach:/argon/distrib/emacs-18.55

4 Create the auto.source map
Create the file /etc/auto.source with the following contents:

emacs-18.55 bach:/helium/source/emacs-18.55
emacs bach:/helium/source/emacs-18.55

5 Create the auto.vol map

Create the file /etc/auto.vol with the following contents:

emacs-18.55 bach:/argon/vol/emacs-18.55
emacs bach:/argon/vol/emacs-18.55
bin bach:/argon/vol/${ARCH}/bin
man -rw,nosuid,hard,intr\

bach:/argon/vol/man
6 Propagate the new maps to the NIS clients

cd /varlyp/amersfoort.Holland.Sun.COM
lusr/etclyp/makedbm /etc/auto.master auto.master
usr/etclyp/makedbm /etc/auto.distrib auto.distrib

File System Organization 3-19

The art of automounting

A complete example: GNU Emacs

Build it

usr/etclyp/makedbm letc/auto.source auto.source
lusr/etclyp/makedbm /etc/auto.vol auto.vol

As of this moment, you have the data classes and instances just created
available on all the systems in the current NIS domain.!

Install it

The building of the targets that comprise the Emacs volume can be done
on your personal workstations, so:

1 Login on liszt (your workstation)

2 Switch to the directory were you will compile and link Emacs
cd /source/emacs

3 Unpack the source distribution

uncompress < /distrib/emacs/emacs-18.55.tar.Z
tar xvBf -

4 Configure and build the targets

Follow the steps described in /source/emacs/INSTALL. At step 3)
you are told to modify src/paths.h and lisp/paths.el. In the first, set
the C macros as follows:

#def ine PATH_LOADSEARCH "/vol/emacs/lisp"
#def ine PATH_EXEC "/vol/emacs/etc.sun4"
#def ine PATH_LOCK "Ivollemacs/lock/"
#def ine PATH_SUPERLOCK\
"/vol/emacs/lock/!!'SuperLock!!!"

This causes Emacs to look in the correct directories at run time.

Since you're on your own workstation and since /vol/emacs is read-only,
you will have to login to the file server in order to install Emacs in the
appropriate directories.

1 Login on bach (the file server for applications)
2 Copy the targets to the installation directory

cd /source/emacs

find info lisp man -depth -print |
cpio -pdvm /argon/vol/emacs-18.55

cd src

cp ctags emacs emacsclient emacstool ctags\
/argon/vol/emacs-18.55/bin.sun4

cd .Jetc

cp DOCTUTORIAL emacs.icon yow.lines\
/argon/vol/emacs-18.55/etc

cp cvtmail env fakemail loadst movemail server yow\
largon/vol/emacs-18.55/etc.sun4

1 The very first time you do this, you have to reboot the systems that need these resources in order for the automounter to

start successfully.

3-20

The Art of Automounting

A complete example: GNU Emacs The art of automounting

3 Create the appropriate links

In order for Emacs to find its own files, you have to set up some links
to the shared information that it needs.

cd ../etc.sun4d
In ../etc/*

Make the Emacs commands available

Still on bach, execute the following:

1 Switch to the architecture dependent bin directory
cd /argon/vol/sun4/bin

2 Create the symbolic links to the executables

In -s /vollemacs/bin.sun4/*

Make the manual pages available

Emacs supports manual pages in section 1 and 6.
1 Create the appropriate symbolic links for section 1 and 6

cd /argon/vol/man/manl

In -s /vol/lemacs/man/manl/*
cd ../man6

In -s /vol/lemacs/man/man6/*

Use it!

The proof of the pudding is in the eating...
1 Login on liszt (your workstation)

2 Modify your search paths

PATH="/vol/bin:${PATH}" export PATH

MANPATH="/vol/man:/usr/share/man” export MANPATH
3 Try it out

man emacs

emacs

That’s it. Any questions?

File System Organization 3-21

The art of automounting Summary

Summary

To summarize, the following table shows you the essence of this

document.

Location Path

logical [classlinstance
physical Ipartition/classlinstance

“For instances”

For applications you need something extra:

Applications Path

logical Ivollapplic-version and
Ivollapplic for the default version

physical [partition/vollapplic-version

Commands and architecture dependencies are handled as follows:

Command Path
logical /vol/bin/command
physical Ipartition/vollarch/bin/command

And the corresponding maps for the automounter look like:

Map name Contents
auto.master [class auto.class [options]
/- auto.direct [options]
/net -hosts [options]
auto.class instance [options] server:/partition/class/instance

And to resolve architecture dependencies, versions and variants use:

Map name Contents Location
auto.vol bin server:/partition/vol/${ARCH}/bin
lib server:/partition/vol/${ARCH}/1ib
etc server:/partition/vol/${ARCH}/etc
app server:/partition/vollapplication-version
app-vers server:/partition/vollapplication-version
auto.direct lust/local server:/partition/vol/${ARCH}

Easy, consistent and efficient.

3-22 The Art of Automounting

Conclusion The art of automounting

Conclusion

With the concepts laid out in this document, plug and play is the way to
go. Especially with SunOS 4.1.1 Revision B, life becomes easy. The only
thing users have to do, is to get the Ethernet address of their new hot
box—which is available from the customer information sheet in the
plastic bag attached to the system unit carton—and give this to the
system administrator. The administrator then uses this information to set
up the NIS hosts and ethers maps accordingly. That’s all. The user can
then turn on the power switch and play! All the relevant files are
automagically available from the first moment the system is switched on.

How’s that for a change?

, G

Ny) a4)

A \

S wX ’
B« — - e

" (I e IMF‘E-—,‘

File System Organization 3-23

The art of automounting Conclusion

3-24 The Art of Automounting

